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Goal : Prediction of the evolution of a claim

- Use artificial intelligence to early identify claims that require more
attention

- Explore and find a model to deal with the unbalanced
characteristic
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N-Grams

Definition
An n-gram is a contiguous sequence of n items from a given sample
of text or speech.

Example
"client hits a pedestrian on a protected passage, shock on the
fender, to the bonnet, the pedestrian is injured" .
1-Grams"client" "hits" "a" "pedestrian" "on" "a" "protected"
"passage" "shock" "on" "the" "fender" "to" "the" "bonnet"
2-Grams"client hits" "hits a" "a pedestrian" "the pedestrian"
"pedestrian is" "is injured"

N-Grams helps us to catch the context
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How does it works ?

Each claim is composed by sentences to describe the claim
circumstances, two representations are possible :
1 Associate a unique numerical value in order to transform our

textual information into numerical values, exactly as Key-Value
system creates a vector of values.

2 Transform the sentence into a matrix encode by the One Hot
transformation
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Example of the content of a claim

"client hits a pedestrian on a protected passage, shock on the
fender, to the bonnet, the pedestrian is injured"

This sentence after the pre-processing step become :

Values vector
[1 22 5 2 . . . ]

One hot Encoding Matrix



1 0 0 0 · · · 0
0 0 0 1 · · · 0
0 0 0 0 · · · 0
0 0 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
... 0

0 0 0 0 · · · 0




dictionary size

︸ ︷︷ ︸
sentence size
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Limitations

These representations are limited because :
1 The Dictionary could be very large
2 Every pair of entities has the same distance.

A better representation exists : The Embedding Matrix
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Embedding Matrix

Definition
An embedding matrix is a linear mapping from the original space
(one-of-k) to a real-valued space where entities can have
meaningful relationships.

Advantages :
- Dimensional Reduction
- Takes into account the context
The perfect input for a Neural Network
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Convolutional Neural Network : CNN

CNN performs processing sequence, each step is usually called a
layer. Different kind of layer exist:

- Convolution layer
- Pooling layer
- Normalization layer
- Fully Connected layer
- Loss layer

Figure: Kim CNN
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Convolution Layer
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Convolution Layer
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Convolution Layer
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Convolution Layer
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Convolution Layer
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Convolution Layer
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Pooling Layer

Figure: Pooling Step
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CNN and Text
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CNN and Text
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Long Short-Term Memory

The Recurrent Neural Networks’ main idea is that data are
dependent on each other.
- RNNs consider an information sequence unlike CNNs
- Recurrent because they perform the same task for each

element of a sequence.
- RNNs have a memory cell
- LSTMs are designed to avoid the long-term dependency

problem.
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Censorship and Kaplan Meier

We have a right censorship in our dataset because some claims are
still going on.

We use Kaplan Meier to correct censorship’s bias.
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Bagging

Definition
Bagging for bootstrap aggregation is a technique for reducing the
variance of an estimated prediction function. It’s seems to work
especially well for high-variance, low-bias procedures, such as trees.
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Bagging
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Bagging
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Problems

In some cases we know how to generate data :

- structured data : SMOTE (Synthetic Minority Over-Sampling
TEchnique)

- images : mirroring, random cropping, rotation, shearing, local
warping, color shifting, distortions, etc

But these techniques are not usable for text data
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Balanced

Let :
- a dataset with K classes.
- fi =

observation number of class i
observation number in the dataset the frequencies of each labels

with f1 ≥ f2 ≥ ... ≥ fk .

- t the percentage of desired observations in the under-represented
class.

The first rebalancing technique is to create sub datasets with the
same frequency of each class.

We define f̃i =
fk∗t
fi

the percentage to be drawn of each label.
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Randomly Balanced

The second rebalancing technique is to have datasets which
frequencies will be different for each neural network.

Let :
- f̃i define as before
- a such that a+ t ≤ 1
- ~U a vector of independent variable uniformly distributed on

[−a, a]

We define f̈i = f̃i + Ui the percentage to be drawn of each label.
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Lightly Balanced

Under sampling the major class such as the minor class account for
10% of our final data set.

- Distribution close to the original

- Distribution which can help us learn our minority class
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We compared different methods to perform the embedding :

rand: All the words are randomly initialized and then modified
during training.

static: The embedding network is initialized using Fasttext.

non-static: Same as static but word vectors are fine-tuned.
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Categories min mean var median max
Standard claims (uncensored) 0 1 1 0,75 16.3
Extreme claims (uncensored) 0,25 3.83 6,93 3,08 16.3
Standard claims (after KM) 0 1.25 2.26 0,83 16.3
Extreme claims (after KM) 0,25 5.24 11.7 4.17 16.3

Table: Empirical statistics on the variable T , before and after correction
by Kaplan-Meier weights ("after KM"). The category "Extreme claims"
corresponds to the situation where I = 1 for x = 3% of the claims, while
"Standard claims" refers to the 97% lower part of the distribution of the
final amount.

Isaac Cohen Sabban, Olivier Lopez, Yann Mercuzot Neural network in insurance 39 / 42



Goal Neural Networks Rebalancing of the dataset Results

Rank Extreme Normal
1 insurer 90% insurer 87%
2 third party 56% third party 61%
3 injured 38% front 46%
4 to ram 30% way 41%
5 to hit 24% backside 40%
6 motorcycle 18% left 20%
7 driver 17% right 18%
8 pedestrian 16% side 17%
9 inverse 15% to shock 14%
10 deceased 13% control 10%

Table: Ranking of the words (translated from French) used in the reports,
depending on the category of claims (Extreme corresponds to I = 1 and
Standard to I = 0.)
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On minority class

Method Model type Embedding precision recall f1-score

Classical

Expert 0.94 0.05 0.02
Random Forest static 0.20 0.22 0.21

Gradient Boosting static 0.17 0.31 0.22
CNN non-static 0.78 0.06 0.12
LSTM non-static 0.66 0.11 0.19

Balanced
CNN non-static 0.28 0.48 0.33
LSTM non-static 0.28 0.46 0.35

Randomly
CNN non-static 0.33 0.42 0.37
LSTM non-static 0.34 0.48 0.40

Lightly
CNN non-static 0.41 0.44 0.42
LSTM non-static 0.47 0.40 0.43
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