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Introduction



Copulas Basics

Suppose that X is a (continuous) random vector of dimension d
with c.d.f F and marginals c.d.f (F;)jc{1,.. q3- Then Sklar's
theorem [6] gives us the copula of X as:

C(u) = F (F7 Y (w1)y oo Fy M (ua))

e C is a c.d.f with uniform margins on [0, 1].

e |t characterises the dependence structure of F in the sense
that F is completely characterised by C and the F;'s.

The estimation of the copula is a wide-treated subject: there exists
a lot of parametric distributions that can be fitted. Some
non-parametric models exists but are facing problems in high
dimensions.
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Density estimation trees

In regression, the CART algorithm from Breiman [3] selects a
covariate and a univariate breakpoint, minimizing a loss, and

assign to each leaf the mean response inside the leaf.

In density estimation, the DET from Ram and Gray [4] selects a
dimension and a breakpoint minimizing a loss, and assign to each
leaf the frequency of observations:

_ U
f(X) - g )\(E) lxel

e What loss can we use ?

e Will this yield a copula if applied to pseudo-observations ?
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Piecewise linear copulas



Let I = [0,1]? be the unit hypercube and £ a partition of I.

Definition (Piecewise linear copula)
Let the piecewise linear copula be defined by its distribution
function:

Vuel, Cpr(u E:MM
teL

o \(u) = ,\([g,&])mz) where A is the lebesgue measure.

e p is a vector of weights summing to one.

Corresponding density : ¢, £(u) = > %lueg
el
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Copula constraints

Property (Copula constraints are linear in the weights)
Cp,c Is a proper copula
=

peCr={peR*: Bp=gandp>0}

B = ()‘[i(ui))(i,u)e{l ..... d}x Mg, LEL (size nd x |L])

Bo =1, (size 1 x |L])

g1 = (u;)(‘.‘u)g{lw_’d}xMC (size nd)

B = (B, B) (size (nd + 1) x |L])
g = (g1,1) (size (nd 4 1))

Where M. is the set of middle-points of leaves in L. 3/



Kendall 7, Spearman p

Definition

7_4/c ) du— landp—12/C )du—3, and K(t) = P(C(U) < )

Property (Piecewise linear class)

d
T:—1+2ZH(b,-/\d,-—ai/\c;)(b;/\d;+a;/\c;—2c;)

LeL i=1
kel

+ 2(d,‘ = C;) (bi —ai N\ d,')

d
p= —3+6ZP£H(2_bi_3i)
teL =1
where we denoted £ = (a, b] and k = (c,d], A denotes the minimum operator

and ~yy is the upper regularised gamma function.

6/24



The Cort Estimator



An integrated square error loss...

We use the integrated square error between densities.
lepe — cll3 = llcp.cll3 — 2 (¢, €) (additive indep.)

2 & _
= Hcp,c\|§ ., Z cp,c(ui)  (MC plug-in)
i=1

2
B Py pefe (f =
= — — = emp. freq)
@M g Mo
= p'Ap — 2p' At (A = diag(A\(0)™1)
= llpllz —2(p.f)c
Where (x,y)r = % is, indeed, a scalar product.

lel
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. yields a simple quadratic program

The weights p* that minimize the integrated square error for a
given partition £ are given by the following:

Definition (Quadratic program)

p* is the solution to the quadratic program :

- 2
arg min —2(p,f
gmin |pllz —2(p,f)z
which is the projection of f onto C. regarding ||.||%.
We denote p* = Pe,(f) this projection.

Note that without the constraints,
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Joint optimisation fo the breakpoint and the weights

For a set of dimensions D in P({1,...,d}), let L(¢,x, D) be the
partition of the leaf ¢ splitted on a point x in dimensions D, i.e:

L((a, b],X, D) :jEXD {(aj7)<j]7 (XJ7 bj]}je{l Xd}\D {(aj7 bj]} o

Define then the full partition by:
Lyp =L\ {lx)}UL(x),x,D).
We will omit the parameter D if D = {1, .., d}.
Definition (Final optimisation problem)
The global optimisation problem we want to solve is :
argmin |plz, , —2(p.fe p)en
D € P({1,...,d}) ’

xel
pec[’x,D
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The recursive procedure

1. Solve the density problem:

arg min —”fCX,DH%XD
D € P({1,...,d}) ’
x €l

e Find the splitting dimensions D first
e Minimize greedily on x via a non-linear programming solver.

2. Recurse on each 7 in L, p by rescaling £ to I and solving the
same problem to obtain the final partition L.

3. Then, with L fixed, solve the projection:

argmin [|p[|Z =2 (p, fc)c
peCc

via a quadratic programming solver, with inital values f..

10/24



Finding the splitting dimensions D (for U ~ C)

Hypothesis (7;)

(UJJ_L U,j)|U€€and Uj|U€fNU(fj)

Bowman [2] : Suppose that ¢ = I, containing n obs. of the random
vairable U ~ F, for F the restriction of C to ¢, rescaled to I. Then:

Definition (Test statistic)
Denote by f(z) the piecewise constant density that will be

estimated on data Uy, ..., U, ~ F, and ej.n(x) = E(£ (x)|%,).
The test statistic is given by :

T = llejn — £ 713

where L, €, and ff(z) are stochastic objetcs, depending on U.
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Test procedure

We weakened the test by assuming that the next split is enough to
test H;. This gives a test procedure as follows:

1. Solve
x* = argmin —HfoH%X
x el
2. Compute:
. £2 £2 f £,
= £ 2=
! 2wt 2 (A(f) A(k))
k€L (1,...,d\{j} feﬁxgé{;,.wd}

Argument : the cut will be on the same x in dimensions other
than j wheter or not we work under H;.
3. Compare to a Monte-carlo simulation of its distribution under

the null to exclude the dimension j if necessary.
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Asymptotic behavior




Previous result

Ram and Gray [4] gave the consistency of ff(z) Assuming the

maximum diameter of leaves goes to 0 as n goes to oo, we have :

P ( lim [|£7 — f]3 = 0) = 1.

n——+00

Denoting g s.t:

YieLl, q = /c(u)du,
¢

this results writes d.(f, g)> — 0, a.s.

Furthermore, by construction, g € C.
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Constraint influence

Definition (Integrated constraint influence)

18 — £213 = di(p, £)?

This quantity measures how much f and p are far from each other.
But since f is closer and closer to g, which is in the set that f is
projected on to give p, we have :

Property (Asymptotical effect of constraints)

The integrated constraint influence is asymptotically 0.

Proof.
C is convex, closed and non-empty. Hence p = P¢(f) exist and is
unique. Since q € C, we have that d(f, p)? < d.(f, q). O
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Cort consistency

Property (Consistency)

For c the density of the true copula, assuming the diameter of
the leaves goes to 0 as n goes to co, the estimator c‘(:g is
consistent, i.e :

n——400

IP( lim \|cf,7”}:—c\\§:o> =1

Proof.

18”2 — ¢l13 = dz(p, @) and de(p, q)? < de(E, q)>. O
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Bagging and cross-validation




A simple forest

Kernels uses leave-one-out for bandwidths.
Sain, Baggerly and Scot [5] formalized the cross-validation process
for density estimation. The more involved out-of-bag procedure we
propose is inspired by Wu [7].
Definition (Out-of-bag " density” and metrics)

1 N
Coob N(U E C u was not in the training set of cU)
Jj=1

2
Joob(en) = llen 3 — - Z Coob(U7)

i=1
) ~ _% Z /n(Coob(Xi))
i=1

KLoob(CN) = /C(U) In <ch/((”3)
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A weighted forest

cl,...,cN, we can assign weights to them
minimizing an out-of-bag integrated square error for the forest :

Definition (Out-of-bag "density” and metrics, weighted
case)

N

1 .

Cgvob(u) = W Z M/jC(J)(u)]‘u was not in the training set of cU)
j=1

Where W(u) is the sum of w;'s for trees that did not see u. Then :

Definition (Optimal weights)
w* = arg min Joop(cy)
w
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Simulation Study




The Cort estimator is implemented in the cort R package, avaliable
on CRAN.

The dataset is as follows :

e Simulation of 200 points from a 3-dimensional clayton copula
with 6 = 8 for marginals 1,3 and 4.

e The second marginal is added as independent uniform draws.

e The fourth marginal is flipped, inducing anticomonotonicity.

Marginals 1,3 and 4 exibit strong dependency.
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Figure 1: The dataset we will use.
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Figure 2: In gray scale, we observe a bivariate histogram of the simulation from the
estimated tree. The small red points represent the input data.
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Figure 3: Left : Oob Kullback-leibler and Oob ISE if function of the number of trees;
Right : Constraint influence and L2-Norm in function of weights
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Figure 4: Top row: kendall's taus. Bottom row: Spearman’s rho. Left: empirical
values from burn-in data. Right : values from the fitted models. The size of the

subsamples is in abssissa.



Table 1: Statitics of several models on the Dataset

Empirical Cb(m=10) Cb(m=5) Beta Cort Bagged Cort
Kendall Taus
T1,2 -0.01 0.00 0.02 -0.01  0.00 -0.04
T1,3 -0.80 -0.75 -0.68 -0.80 -0.78 -0.56
T1,4 0.78 0.73 0.66 0.78 0.71 0.54
™3 0.03 0.02 0.00 0.02 0.00 0.05
T4 -0.03 -0.02 -0.01 -0.04 0.00 -0.05
73,4 -0.78 -0.73 -0.65 -0.77 -0.69 -0.55
Spearman Rhos
p1,2 -0.02 0.00 0.02 -0.02  0.00 -0.02
P13 -0.93 -0.91 -0.87 -0.93 -0.93 -0.72
P14 0.93 0.90 0.86 0.93 0.87 0.70
2,3 0.04 0.02 0.00 0.04 0.00 0.04
P24 -0.05 -0.03 -0.01 -0.06 0.00 -0.04
P34 -0.92 -0.90 -0.85 -0.92 -0.86 -0.71
Bagging Results
KLy, Inf 4.48 3.80 455 -515 NaN




Conclusion




Take away and potential improvements

Some take away points:

e Piecewise linear distribution function are handy models for
copula modeling since the copula constraints have a nice
expression

e Fitting piecewise linear d.f with trees is quite simple and fast

e The main issue is the degree of freedom in weights took away

by the copula constraint.

e Such models can easily be bagged, boosted, cross-validated...
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