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Introduction

Let (𝑋1, 𝑋2, … , 𝑋𝑛) denote the cumulative payments associated with a given accident 
year, where 𝑋𝑖 denotes the claims paid up to the 𝑖-th development year. The random 
variables (𝑋1, … , 𝑋𝑛) are dependent. 

At each point of time 𝑘 = 1, . . . , 𝑛 − 1, the insurer predicts the value of the aggregate 
claims by calculating 𝔼[𝑋𝑛|𝑋1, . . . , 𝑋𝑘]. The expected value  

𝐵𝐸𝑘 = 𝔼 𝑋𝑛 𝑋1, . . . , 𝑋𝑘

is called the best estimate of the ultimate loss. 
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Introduction

Insurance companies are exposed to premium and reserve risk:  

• Premium risk - related to the losses resulting from the premiums that are to be 
earned in the following year. 

• Reserve risk - related to the adequacy of the current volumes of the claims reserves. 

We also differ between the notion of ultimate and one-year risk. For premium risk we 
understand them as the risk that the premiums earned in a given year are not sufficient 
to cover:  

• For ultimate risk the losses paid in an infinite time horizon (the so-called ultimate 
loss) - described by 𝑋𝑛. 

• For one-year risk the losses paid in the first year and the reserve set at the end of the 
first year - described by 𝐵𝐸1. 
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Introduction

For classic reserve risk models, where we know the distribution of 𝑋1 and 𝑋𝑖+1|𝑋𝑖, it is clear how to
perform a forward simulation of (𝑋1, … , 𝑋𝑛) and we know the relation between 𝑋𝑛 and 𝑋1. Such a
forward simulation scheme is investigated e.g. in [Wüthrich, Merz(2015)] where the relations
between one-year reserve risk and the ultimate reserve risk is discussed in details.

The new problem which we study in this paper is how to model the one-year premium risk and 
the ultimate premium risk (𝐵𝐸1, 𝑋𝑛) by generating them in a backward simulation starting with 
the ultimate loss 𝑋𝑛 for the new accident year.

In reserve risk models, so called one-year claims development results 𝐶𝐷𝑅𝑠 are investigated. 
We want to use a counterpart for the one-year premium risk, which is the technical result for the 
new accident year defined as the difference between premiums and claims. Since the premiums 
include an expected profit margin, we replace them with 𝐸[𝑋𝑛] in our definition, having as a result 
𝑋𝑛 − 𝐸[𝑋𝑛] as the modelled variable for ultimate risk and 𝐵𝐸1 − 𝐸[𝐵𝐸1] for one-year risk.
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Introduction

Motivation:  

1. One-year risk needs to be investigated by the companies for Solvency II risk capital. 
Many companies have already created models for simulating their ultimate losses and 
we can modify them into one-year models by means of backward simulation. 

2. From business point of view, the unconditional distribution of 𝑋𝑛 is well-understood by 
decision makers, is used in all planning reports, is the basis of pricing, long-term risk 
analysis and allows for plausibility checks of the results.

We will model the relations between one-year and ultimate premium risk by finding the 
true emergence pattern, which is defined as the conditional distribution 𝐵𝐸1|𝑋𝑛.

From the conditional distribution of 𝐵𝐸1|𝑋𝑛, we next derive the unconditional distribution of 
𝐵𝐸1 used for quantifying the true (unconditional) one-year premium risk. This will allows us 
to study the true relation between the one-year and ultimate premium risk in models 
with various distributions of the ultimate loss and various claims development processes.
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Emergence pattern

We follow the approach of [England(2012)] and [Bird, Cairns(2011)], who introduce the concept of 
an emergence pattern of the ultimate loss. They postulate the following relation of 𝐵𝐸1 and 𝑋𝑛 by 
using a simple linear function:  

𝐵𝐸1
𝑒𝑝

= 𝛼𝑋𝑛 + (1 − 𝛼)𝔼[𝑋𝑛],

where 𝛼 is called an emergence factor and 𝛼 ∈ (0,1).

To calculate the 𝛼 parameter we follow the idea of [England(2012)], [Bird, Cairns(2011)]

𝛼 =
𝑆𝐷[𝐵𝐸1]

𝑆𝐷[𝑋𝑛]
=

𝑆𝐷 𝐵𝐸1 − 𝐸 𝐵𝐸1

𝑆𝐷 𝑋𝑛 − 𝐸 𝑋𝑛

The estimation of standard deviation of 𝐵𝐸1 and 𝑋𝑛 is done in two steps:

• We estimate the distribution of development factors 𝑋𝑖+1 𝑋𝑖 𝑖=1
𝑛−1 or 𝑋𝑖+1 − 𝑋𝑖 𝑖=1

𝑛−1 from the 
historical losses in a run-off triangle in a claims reserving model.

• We estimate the unconditional distribution of 𝑋1 using e.g. an additive model, which is usually 
related to the planned volume of exposure, coming from the financial plans.
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Emergence pattern
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Additional assumption:

• We do not consider estimation error 
and we assume that all parameters of 
the claims development process are 
given - as a result one-year premium 
risk can be investigated independently 
of one-year reserve risk.

Key goal:

• Analyse probabilistic properties of the 
one-year premium risk and the ultimate 
premium risk implied by various claims 
development processes.
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Emergence pattern

𝐵𝐸1
𝑒𝑝

= 𝛼𝑋𝑛 + (1 − 𝛼)𝔼[𝑋𝑛],

Theorem 1. We have the following properties of the emergence pattern:  

1. 𝔼[𝐵𝐸1
𝑒𝑝
] = 𝔼[𝑋𝑛] and 𝑉𝑎𝑟[𝐵𝐸1

𝑒𝑝
] = 𝛼2𝑉𝑎𝑟[𝑋𝑛] < 𝑉𝑎𝑟[𝑋𝑛], 

2. 𝑉𝑎𝑅𝛾[𝐵𝐸1
𝑒𝑝
− 𝔼[𝐵𝐸1

𝑒𝑝
]] = 𝛼𝑉𝑎𝑅𝛾[𝑋𝑛 − 𝔼[𝑋𝑛]] < 𝑉𝑎𝑅𝛾[𝑋𝑛 − 𝔼[𝑋𝑛]], 

3. If 𝑋𝑛 has a light-tailed (subexponential with all moments finite) distribution, then 𝐵𝐸1
𝑒𝑝

has a light-tailed (subexponential with all moments finite) distribution, 

4. If 𝑋𝑛 has a heavy-tailed distribution with tail index 𝜃, then 𝐵𝐸1
𝑒𝑝

has a heavy-tailed 

distribution with tail index 𝜃, and we have the limit  lim
𝛾→1

𝑉𝑎𝑅𝛾[𝐵𝐸1
𝑒𝑝
−𝔼[𝐵𝐸1

𝑒𝑝
]]

𝑉𝑎𝑅𝛾[𝑋𝑛−𝔼[𝑋𝑛]]
= 𝛼.
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Emergence pattern

Theorem 2.

1. The one-year risk is lower than the ultimate risk at all confidence levels.

2. The one-year risk decreases linearly in 𝛼 when the emergence factor 𝛼 decreases at all 
confidence levels.

3. The distributions of the one-year risk and the ultimate risk have the same tail behaviour. 

Disadvantages of the emergence pattern approach:  

1. The emergence pattern is true only if 𝐵𝐸1 is perfectly linearly correlated with 𝑋𝑛, i.e. if 
𝜌(𝐵𝐸1, 𝑋𝑛) = 1. 

2. The conditional distribution of 𝐵𝐸1
𝑒𝑝
|𝑋𝑛 = 𝑥 is degenerate. 

3. The true relation between 𝑉𝑎𝑅𝛾[𝐵𝐸1] and 𝑉𝑎𝑅𝛾[𝑋𝑛] varies across the models and may not be 
linear in 𝛼. Additionally, it may not be equal to the relation of the 𝑆𝐷[𝐵𝐸1] and 𝑆𝐷[𝑋𝑛]. 
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Incremental Loss Ratio Gaussian Model

Firstly, we consider Incremental Loss Ratio model with Gaussian incremental 
losses.  

𝑋𝑗 = 

𝑖=1

𝑗

𝜖𝑖 , where: 𝜖𝑖 ∼ 𝑁 𝐸𝑚𝑖 , 𝐸𝜎𝑖
2 for 𝑖 ∈ {1, . . . , 𝑛},

and: 𝜖𝑖 ⊥⊥ 𝜖𝑗 for 𝑖 ≠ 𝑗 ∈ {1, . . . , 𝑛}.

𝐸 denotes the exposure in the accident year under consideration, and 𝜖𝑖 represents the 
incremental loss in development year 𝑖. We will denote  

𝑚 = 

𝑖=1

𝑛

𝑚𝑖 , 𝜎2 = 

𝑖=1

𝑛

𝜎𝑖
2.

In this reserve risk model the best estimate of the ultimate loss after the first year is 
calculated by  

𝐵𝐸1 = 𝔼[𝑋𝑛|𝑋1] = 𝑋1 + 𝐸(𝑚 −𝑚1). 11/23



Incremental Loss Ratio Gaussian Model

Proposition 1. Let us consider the Incremental Loss Ratio Gaussian model of 
claims development. We have the following loss distributions:  

• 𝑋𝑛 ∼ 𝑁(𝐸𝑚, 𝐸𝜎2),

• 𝐵𝐸1 ∼ 𝑁(𝐸𝑚, 𝐸𝜎1
2),

• 𝑋1|𝑋𝑛 = 𝑥 ∼ 𝑁(
𝜎1
2

𝜎2
(𝑥 − 𝐸(𝑚 −𝑚1)) +

𝜎2−𝜎1
2

𝜎2
𝐸𝑚1; 𝐸

𝜎1
2(𝜎2−𝜎1

2)

𝜎2
),

• 𝐵𝐸1|𝑋𝑛 = 𝑥 ∼ 𝑁(
𝜎1
2

𝜎2
𝑥 +

𝜎2−𝜎1
2

𝜎2
𝐸𝑚; 𝐸

𝜎1
2(𝜎2−𝜎1

2)

𝜎2
).
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Incremental Loss Ratio Gaussian Model

We are able to improve the emergence pattern formula so that it yields the correct 
conditional distribution of 𝐵𝐸1|𝑋𝑛 and unconditional distribution of 𝐵𝐸1 in the reserve risk 
model and does not depend explicitly on the distributions of 𝑋1 and 𝑋𝑖+1|𝑋𝑖 - it depends 
only on the distribution of 𝑋𝑛 and the emergence factor 𝛼.

Theorem 3. Let us set  

𝜇𝑋𝑛 = 𝔼[𝑋𝑛], 𝜎𝑋𝑛
2 = 𝑉𝑎𝑟[𝑋𝑛], 𝛼 =

𝑆𝐷[𝐵𝐸1]

𝑆𝐷[𝑋𝑛]
.

We consider the ILR gaussian model with 𝑋𝑛 ∼ 𝑁(𝜇𝑋𝑛 , 𝜎𝑋𝑛
2 ). We have the following 

distributions of the best estimate of the ultimate loss:  

• 𝐵𝐸1|𝑋𝑛 = 𝑥 ∼ 𝑁(𝛼2𝑥 + (1 − 𝛼2)𝜇𝑋𝑛; 𝛼
2(1 − 𝛼2)𝜎𝑋𝑛

2 ),

• 𝐵𝐸1 ∼ 𝑁(𝜇𝑋𝑛 , 𝛼
2𝜎𝑋𝑛

2 ).
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Incremental Loss Ratio Gaussian Model

Following the emergence pattern formula we have  
𝐵𝐸1

𝑒𝑝
= 𝛼𝑋𝑛 + (1 − 𝛼)𝜇𝑋𝑛 and 𝐵𝐸1

𝑒𝑝
∼ 𝑁(𝜇𝑋𝑛 , 𝛼

2𝜎𝑋𝑛
2 ).

Theorem 4. Let us consider the ILR Gaussian model.  

1. The emergence pattern formula yields the proper distribution of the one-year risk, 

2. The one-year risk is lower than the ultimate risk at all confidence levels, 

3. The one-year risk decreases linearly in 𝛼 when the emergence factor 𝛼 decreases at 
all confidence levels, 

4. The distributions of the one-year risk and the ultimate risk have the same tail 
behaviour. 
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Multiplicative lognormal model

Secondly, we consider a multiplicative loss model where the development factors are 
modelled with lognormal distributions. We deal with the cumulative payments 
determined by the reserve risk model:

𝑋𝑗 = 𝑋𝑗−1 ⋅ 𝜖𝑗 , where: 𝜖𝑖 ∼ 𝐿𝑜𝑔𝑁(𝑚𝑖 , 𝜎𝑖
2) for𝑖 ∈ {1, . . . , 𝑛},

𝑋1 = 𝜖1and: 𝜖𝑖 ⊥⊥ 𝜖𝑗 for𝑖 ≠ 𝑗 ∈ {1, . . . , 𝑛}.

We will denote  

𝑚 = 

𝑖=1

𝑛

𝑚𝑖 , 𝜎2 = 

𝑖=1

𝑛

𝜎𝑖
2.

In this reserve risk model the best estimate of the ultimate loss after the first year is 
calculated as  

𝐵𝐸1 = 𝔼[𝑋𝑛|𝑋1] = 𝑋1𝑒
𝑚−𝑚1+

1
2
(𝜎2−𝜎1

2).
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Multiplicative lognormal model

Theorem 5. For 𝑋𝑛 ∼ 𝐿𝑜𝑔𝑁 with the expected value 𝜇𝑋𝑛 and variance 𝜓𝑋𝑛
2 𝜇𝑋𝑛

2

𝜇𝑋𝑛 = 𝔼[𝑋𝑛], 𝜓𝑋𝑛 =
𝑆𝐷[𝑋𝑛]

𝔼[𝑋𝑛]
, 𝛼 =

𝑆𝐷[𝐵𝐸1]

𝑆𝐷[𝑋𝑛]
.

We receive the distributions of the best estimate of the ultimate loss: 

𝐵𝐸1|𝑋𝑛 = 𝑥 ∼ 𝐿𝑜𝑔𝑁  𝛼2log 𝑥 + 1 −  𝛼2  𝑚 +
 𝜎2

2
;  𝛼2 1 −  𝛼2  𝜎2 ,

𝐵𝐸1 ∼ 𝐿𝑜𝑔𝑁  𝑚 + 1 −  𝛼2
 𝜎2

2
;  𝛼2  𝜎2 ,

where the parameters are 

 𝑚 = 𝑙𝑜𝑔 𝜇𝑋𝑛 −
1

2
log 1 + 𝜓𝑋𝑛

2 ,  𝜎2 = log 1 + 𝜓𝑋𝑛
2 ,

 𝛼2 =
log 1 + 𝛼2𝜓𝑋𝑛

2

log 1 + 𝜓𝑋𝑛
2

.
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Multiplicative lognormal model

Following the emergence pattern formula we have  

𝐵𝐸1
𝑒𝑝

∼ 𝛼 ⋅ 𝐿𝑜𝑔𝑁  𝑚,  𝜎2 + 1 − 𝛼 𝜇𝑋𝑛 .

Theorem 6. Let us consider the multiplicative lognormal model.  

1. The emergence pattern formula underestimates the true one-year risk at low 
confidence levels and overestimates the true one-year risk at high confidence levels, 

2. The true one-year risk is lower than the ultimate risk at high confidence levels but the 
true one-year risk is higher than the ultimate risk at low confidence levels, 

3. The true one-year risk vanishes compared to the ultimate risk for the confidence level 

in the limit 𝛾 → 1, i.e., lim𝛾→1
𝑉𝑎𝑅[𝐵𝐸1−𝔼[𝐵𝐸1]]

𝑉𝑎𝑅[𝑋𝑛−𝔼[𝑋𝑛]]
= 0. In practical examples, the true one-

year risk at very high confidence levels can decreases as fast as at order 𝛼2 when 
the emergence factor 𝛼 decreases. 
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Multiplicative lognormal model

The ratios 
𝑉𝑎𝑅𝛾[𝐵𝐸1−𝔼[𝐵𝐸1]]

𝑉𝑎𝑅𝛾[𝑋𝑛−𝔼[𝑋𝑛]]
in the multiplicative lognormal model. 
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Emergence pattern – arbitrary 𝑋𝑛

It may be difficult to specify a priori the joint multivariate distribution for cumulative 
payments (𝑋1, 𝑋2, … , 𝑋𝑛), which lead to a pre-specified distribution of the ultimate loss 𝑋𝑛. 
That is why, our next step is to modify the reparametrized approach, so that we may use 
an arbitrary distribution of the ultimate loss. 

What we suggest is to keep the conditional distribution of 𝑩𝑬𝟏|𝑿𝒏 and use any 
unconditional distribution of the ultimate loss 𝑿𝒏. 

Firstly, we have a flexible and interpretable probabilistic model, where we can switch 
from the ultimate risk to the one-year risk and which can be used in Solvency II 
premium risk modelling. 

Secondly, we can investigate properties of the one-year risk vs. the ultimate risk in 
various claims development models, beyond the models we know from the claims 
reserving literature.
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Emergence pattern – arbitrary 𝑋𝑛

For the ILR Gaussian model we have the following representation:  

𝐵𝐸1 = 𝛼2𝑋𝑛 + (1 − 𝛼2)𝜇𝑋𝑛 + 𝛼2(1 − 𝛼2)𝜎𝑋𝑛𝜉,

where 𝜉 ∼ 𝑁(0,1), 𝑋𝑛 ∼ 𝑁(𝜇𝑋𝑛 , 𝜎𝑋𝑛
2 ), and 𝜉 is independent of 𝑋𝑛. 

It can be seen as an extension of the classical emergence pattern formula, where we 
simply add a Gaussian noise in order to have a non-degenerate distribution of 𝐵𝐸1|𝑋𝑛 = 𝑥. 

For the multiplicative lognormal model we have the following representation:  

𝐵𝐸1 = (𝑋𝑛)
 𝛼2𝑒(1−

 𝛼2)(  𝑚+
 𝜎2

2
)𝑒  𝛼2(1− 𝛼2) 𝜎𝜉 ,

where 𝜉 ∼ 𝑁(0,1), 𝑋𝑛 ∼ 𝐿𝑜𝑔𝑁(𝑚, 𝜎2), and 𝜉 is independent of 𝑋𝑛. 

It can be seen as an extension of the classical emergence pattern formula, where we 
allocate the ultimate loss 𝑋𝑛 to 𝐵𝐸1 with a random scaling factor in order to have a non-
degenerate distribution of 𝐵𝐸1|𝑋𝑛 = 𝑥. 
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