
Modeling Multi-country Mortality Dependence by 

a Vine Copula

Masafumi Suzuki

FIAJ, CERA
The Prudential Gibraltar Financial Life Insurance Co., Ltd.

May 11th – May 15th 2020 



About the speaker

Masafumi Suzuki 

• Manager, Actuarial Team

• Fellow of The Institute of Actuaries of Japan(FIAJ), CERA

• Member of ASTIN-related Study Group of The Institute of Actuaries of Japan. 

The Prudential Gibraltar Financial Life Insurance Co., Ltd.

▪ Japanese subsidiary of Prudential Financial, Inc.

▪ Bancassurance Channel 

2



Introduction

◼Multi-country mortality dependence attracts the attention of insurers 
operating life insurance or annuity business in multiple countries. 

◼When implementing a sophisticated enterprise risk management (ERM) 
program, it is crucial to model the structure of such dependence accurately.

◼Elliptic and Archimedean copulas are often used for risk aggregation in 
advanced ERM. 

◼However, these well-known copulas cannot always flexibly capture complex 
tail dependence, especially under certain stressed situations. 

◼This study proposes modeling multi-country mortality dependence by a vine 
copula, which provides greater flexibility and efficiently characterizes the 
dependence structure. 
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What is a copula ?

◼A copula is the joint distribution of distribution functions of random valuables.

◼A copula is able to flexibly express the dependence structure between 
bivariate random valuables, especially the tail dependence.

◼Follows are the plots of well-known bivariate copulas(Kendall’s tau =0.75).

Gumbel copula Gaussian copula T copulaClayton copula

𝐹 𝑥1, 𝑥2 = 𝐶 𝐹1 𝑥1 , 𝐹2 𝑥2 .
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Limitation of well-known copulas
◼Archimedean copulas(such as Gumbel copula and Clayton copula) have only 

one parameter, so these copulas cannot express the different dependence 
between each pair of random variables.

◼Gaussian copula does not have tail dependence and underestimates the risk.

◼T copula is better, but not flexible because t copula expresses the tail 
dependence by only one parameter (the degree of freedom).

n：the number of variables 𝑣：the degree of freedom 𝜌：correlation coefficient

Copulas # parameters
Lower tail 

dependence
Upper tail 

dependence

Gumbel copula 1 0 2 − 21/α

Clayton copula 1 2−1/𝛼 0

Gaussian copula n(n-1)/2 0 0

T copula n(n-1)/2+1 2𝑡𝑣+1 −
𝑣 + 1 1 − 𝜌

1 + 𝜌
2𝑡𝑣+1 −

𝑣 + 1 1 − 𝜌

1 + 𝜌
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What is a vine copula ?

In applying Sklar’s theorem proposed by Sklar(1959), one can construct the 
joint probability density function of random variables 𝑋1 and 𝑋2 as follows:

𝑓 𝑥1, 𝑥2 = 𝑐1,2 𝐹1 𝑥1 , 𝐹2 𝑥2 𝑓1 𝑥1 𝑓2 𝑥2 .

We can also express the joint probability density function using conditional 
probability as follows:

𝑓 𝑥1, 𝑥2 = 𝑓1|2 𝑥1|𝑥2 𝑓2 𝑥2 .

Combining equation (1) and (2), 𝑓1|2 𝑥1|𝑥2 is shown as follows:

𝑓1|2 𝑥1|𝑥2 = 𝑐1,2 𝐹1 𝑥1 , 𝐹2 𝑥2 𝑓1 𝑥1 .

(1)

(2)

(3)
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What is a vine copula ?

We can express the joint probability density function of random valuables (𝑋1, 𝑋2 and , 𝑋3) 
using the conditional probability density function as follows:

𝑓 𝑥1, 𝑥2, 𝑥3 ＝𝑓3 𝑥3 𝒇𝟐|𝟑 𝒙𝟐|𝒙𝟑 𝒇𝟏|𝟐,𝟑 𝒙𝟏|𝒙𝟐, 𝒙𝟑 .

Following the last page, 𝒇𝟐|𝟑 𝒙𝟐|𝒙𝟑 can be written as follows:

𝒇𝟐|𝟑 𝒙𝟐|𝒙𝟑 = 𝑐2,3 𝐹2 𝑥2 , 𝐹3 𝑥3 𝑓2 𝑥2 .

𝒇𝟏|𝟐,𝟑 𝒙𝟏|𝒙𝟐, 𝒙𝟑 can be obtained by a conditional bivariate copula density function

𝒇𝟏|𝟐,𝟑 𝒙𝟏|𝒙𝟐, 𝒙𝟑 = 𝑐1,3|2 𝐹1|2 𝑥1|𝑥2 , 𝐹3|2 𝑥3|𝑥2 𝒇𝟏 𝒙𝟏 𝒙𝟐

= 𝑐1,3|2 𝐹1|2 𝑥1|𝑥2 , 𝐹3|2 𝑥3|𝑥2 𝑐1,2 𝐹1 𝑥1 , 𝐹2 𝑥2 𝑓1 𝑥1 .

Combining (1),(2), and (3), we obtain

𝑓 𝑥1, 𝑥2, 𝑥3 = 𝑐1,3|2 𝐹1|2 𝑥1|𝑥2 , 𝐹3|2 𝑥3|𝑥2 𝑐1,2 𝐹1 𝑥1 , 𝐹2 𝑥2
× 𝑐2,3 𝐹2 𝑥2 , 𝐹3 𝑥3 𝑓1 𝑥1 𝑓2 𝑥2 𝑓3 𝑥3 .

This feature can be easily generalized to n dimensions.

(1)

(2)

(3)

(4)
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What is a vine copula ?
◼Such dependence structure can be graphically expressed by vines, the 

concept of graph theory. 

◼A vine copula expresses the node as a random variable and the edge as a 
conditional bivariate copula.

◼The application for market risk and credit risk modeling has been studied 
in recent years. 

𝑓 𝑥1, 𝑥2, 𝑥3 = 𝑐1,3|2 𝐹1|2 𝑥1|𝑥2 , 𝐹3|2 𝑥3|𝑥2 𝑐1,2 𝐹1 𝑥1 , 𝐹2 𝑥2

× 𝑐2,3 𝐹2 𝑥2 , 𝐹3 𝑥3 𝑓1 𝑥1 𝑓2 𝑥2 𝑓3 𝑥3

𝑐1,2 𝐹1 𝑥1 , 𝐹2 𝑥2 𝑐2,3 𝐹2 𝑥2 , 𝐹3 𝑥3 𝑐1,3|2 𝐹1|2 𝑥1|𝑥2 , 𝐹3|2 𝑥3|𝑥2

8



The overview of this research

◼Express the mortality rate of 13 countries(12 European countries and 
Australia) by a Lee-Carter model.

◼Model the joint distribution of mortality improvement parameters of each 
country by a vine copula.

◼Compare our model to the models by benchmark copulas.

Estimation of mortality 

rates

(Lee-Carter model)

Estimation of improvement 

parameters

(time series model)

Estimation of the joint 

distribution
（vine copula）
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Estimation of mortality rates

Estimation of mortality 

rates

(Lee-Carter model)

Estimation of improvement 

parameters

(time series model)

Estimation of the joint 

distribution
（vine copula）
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Data & Methodology

◼We model the marginal dynamic of the mortality rates for each country 
based on a Lee-Carter model.

◼ In the modeling of this study, we use R package

”StMoMo” and “VineCopula”.

Data source ： Human Mortality Database

Countries ： 12 European countries ＋Australia(AUS) 

Age ： From 65 to 90 inclusive

Sex ： Male

Year ： 1921 ～ 2014
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Lee-Carter model

𝑞𝑥,𝑡 : base mortality rates at age 𝑥 and time 𝑡

𝛼𝑥 : average profile of mortality

𝜅𝑡: mortality changes over time

𝛽𝑥: how much each age group mortality changes when 𝜅𝑡
𝑗

changes

𝑒𝑥,𝑡 : error term which reflects the effects not captured by the model

𝑙𝑜𝑔 𝑞𝑥,𝑡 = 𝛼𝑥 + 𝛽𝑥・𝜅𝑡 + 𝑒𝑥,𝑡

Mortality sensitivity by 𝜅𝑡

Improvement parameter by yearLogarithm of  Base 𝑞𝑥
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Estimation of morality rates of 13 countries

𝑙𝑜𝑔 𝑞𝑥,𝑡
1 = 𝛼𝑥

1 + 𝛽𝑥
1𝜅𝑡

1 + 𝑒𝑥,𝑡
1

𝑙𝑜𝑔 𝑞𝑥,𝑡
2 = 𝛼𝑥

2 + 𝛽𝑥
2𝜅𝑡

2 + 𝑒𝑥,𝑡
2

𝑙𝑜𝑔 𝑞𝑥,𝑡
13 = 𝛼𝑥

13 + 𝛽𝑥
13𝜅𝑡

13 + 𝑒𝑥,𝑡
13

…

Australia

Belgium

Iceland

𝑙𝑜𝑔 𝑞𝑥,𝑡
3 = 𝛼𝑥

3 + 𝛽𝑥
3𝜅𝑡

3 + 𝑒𝑥,𝑡
3

𝑙𝑜𝑔 𝑞𝑥,𝑡
4 = 𝛼𝑥

4 + 𝛽𝑥
4𝜅𝑡

4 + 𝑒𝑥,𝑡
4

𝑙𝑜𝑔 𝑞𝑥,𝑡
5 = 𝛼𝑥

5 + 𝛽𝑥
5𝜅𝑡

5 + 𝑒𝑥,𝑡
5

We fit the Lee-carter model to the mortality data of each country.

Nederland

England & Wales

Denmark
…
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Estimation of improvement 

parameters

Estimation of mortality 

rates

(Lee-Carter model)

Estimation of improvement 

parameters

(time series model)

Estimation of the joint 

distribution
（vine copula）
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Estimation of future mortality rates
𝑙𝑜𝑔 𝑞𝑥,𝑡

1 = 𝛼𝑥
1 + 𝛽𝑥

1 𝜅𝑡
1 + 𝑒𝑥,𝑡

1

𝑙𝑜𝑔 𝑞𝑥,𝑡
2 = 𝛼𝑥

2 + 𝛽𝑥
2 𝜅𝑡

2 + 𝑒𝑥,𝑡
2

𝑙𝑜𝑔 𝑞𝑥,𝑡
13 = 𝛼𝑥

13 + 𝛽𝑥
13 𝜅𝑡

13 + 𝑒𝑥,𝑡
13

𝑙𝑜𝑔 𝑞𝑥,𝑡
3 = 𝛼𝑥

3 + 𝛽𝑥
3 𝜅𝑡

3 + 𝑒𝑥,𝑡
3

𝑙𝑜𝑔 𝑞𝑥,𝑡
4 = 𝛼𝑥

4 + 𝛽𝑥
4 𝜅𝑡

4 + 𝑒𝑥,𝑡
4

𝑙𝑜𝑔 𝑞𝑥,𝑡
5 = 𝛼𝑥

5 + 𝛽𝑥
5 𝜅𝑡

5 + 𝑒𝑥,𝑡
5

We assume 𝛼𝑥
𝑗

and 𝛽𝑥
𝑗

are constant over the future period,

and model 𝜅𝑡
𝑗

as a time series model.

…

Australia

Belgium

Iceland

Nederland

England & Wales

Denmark
…
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The movement of 𝜅𝑡 looks straight

⇒Random walk with a drift term

The result of estimation (ex. France)

𝜅𝑡：Improvement parameter by year

𝛽𝑥：Mortality sensitivity by 𝜅𝑡𝛼𝑥：Logarithm of base 𝑞𝑥

𝑙𝑜𝑔 𝑞𝑥,𝑡 = 𝛼𝑥 + 𝛽𝑥・𝜅𝑡 + 𝑒𝑥,𝑡

𝜅𝑡 = 𝜅𝑡−1 + 𝜇 + 𝜀𝑡
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Modeling the movement of the improvement parameter

𝜅𝑡
1 = 𝜅𝑡−1

1 + 𝜇1 + 𝜀𝑡
1,  𝜀𝑡

1~𝑁 0, 𝜎1
2

…

𝜅𝑡
2 = 𝜅𝑡−1

2 + 𝜇2 + 𝜀𝑡
2, 𝜀𝑡

2~𝑁 0, 𝜎2
2

𝜅𝑡
3 = 𝜅𝑡−1

3 + 𝜇3 + 𝜀𝑡
3, 𝜀𝑡

3~𝑁 0, 𝜎3
2

𝜅𝑡
4 = 𝜅𝑡−1

4 + 𝜇4 + 𝜀𝑡
4, 𝜀𝑡

4~𝑁 0, 𝜎4
2

𝜅𝑡
5 = 𝜅𝑡−1

5 + 𝜇5 + 𝜀𝑡
5, 𝜀𝑡

5~𝑁 0, 𝜎5
2

𝜅𝑡
13 = 𝜅𝑡−1

13 + 𝜇13 + 𝜀𝑡
13, 𝜀𝑡

13~𝑁 0, 𝜎13
2

Each error term follows a normal 

distribution.

In this study, we model the joint 

distribution of 𝜀𝑡
𝑖 by a vine copula.
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Estimation of the joint 

distribution

Estimation of mortality 

rates

(Lee-Carter model)

Estimation of improvement 

parameters

(time series model)

Estimation of the joint 

distribution
（vine copula）
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1. Determine the tree structure.

2. Determine the copula families applied to each edge of the vine.

3. Estimate the parameters of each copula.

The process of the modeling by a vine copula

1 2 3

Tree 1

1|2 3|2

Tree 2

1 2 3

Tree 1

1|2 3|2

Tree 2

1 2 3

Tree 1

1|2 3|2

Tree 2Gumbel(𝛼 = 0.2) Gaussian(𝜌 = 0.5) Clayton(𝛼 = 0.3)

Gumbel Gaussian Clayton
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Modeling by a vine copula

◼Although a vine copula has flexibility, the number of tree structures is too 
huge to choose. 

◼The following table illustrates the super-exponential growth of the number of 
structures for dimensions 𝑛 = 2,… , 10. 

◼An automatic algorithm is necessary for modeling by a vine copula.

Dimension（𝑛） # tree structures Tree × copula* 

2 1 7 

3 3 1,029 

4 24 2,823,576 

5 480 1.3559 e+11 

6 23,040 1.0938 e+17 

7 2,580,480 1.4413 e+24 

8 660,602,880 3.0387 e+32 

9 3.8051e+11 1.0090 e+42 

10 4.8705e+14 5.2118 e+52 

*When there are 7 options for copula. 
20



1. Choose the tree structure that maximizes the absolute value of each pair’s Kendall’s tau.

2. Select the bivariate copula for each edge of the tree based on AIC.

3. Estimate the parameters by maximum likelihood estimation.

Sequential method proposed by Dißmann et al. (2013)

1 2 3

Tree 1

1|2 3|2

Tree 2

1 2 3

Tree 1

1|2 3|2

Tree 2

1 2 3

Tree 1

1|2 3|2

Tree 2Gumbel(𝛼 = 0.2) Gaussian(𝜌 = 0.5) Clayton(𝛼 = 0.3)

Gumbel Gaussian Clayton
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  

 

1 <-> AUS,   2 < -> BEL,   3 <-> NLD,   4 < -> EW,   5 < -> DNK,   6 < -> NOR,   7 < -> FIN, 

8 <-> SWE,   9 < -> FRA,   10 < -> ITA,   11 < -> ESP,   12 <-> CHE,   13 < -> ICE 

Australia and Iceland are 

located far from others. 

Group 1 

Group 3 

Group 2 

 

 

ICE(13) 

EW(4) 

ESP(11) 

FRA(9) 

ITA(10) 

CHE(12) 

BEL(2) 

NLD(3) 

FIN(7) 

SWE(8) 
NOR(6) 

DNK(5) 

Group 1 

Group 2 

Group 3 

Dependence structure by the vine copula

By using the sequential method, we obtain a dependence structure resembling 

the actual geographical relationships, which is intuitively understandable.
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Edge Copula Parameter1 Parameter2*1 Kendall’s 𝜏 λU*2 λL*2 

4-1 T 0.10 3.83 0.07 0.11 0.11 

3-4 T 0.75 6.85 0.50 0.28 0.28 

2-3 T 0.80 5.13 0.59 0.44 0.44 

9-11 Frank 4.47 - 0.42 - - 

9-2 Frank 8.74 - 0.63 - - 

5-13 Frank 1.68 - 0.18 - - 

8-6 Gumbel 1.59 - 0.37 0.45 - 

8-5 Gaussian 0.65 - 0.45 - - 

7-8 Frank 4.98 - 0.46 - - 

9-7 T 0.64 30.00 0.44 0.01 0.01 

9-10 
Serval 

Gumbel 
2.32 - 0.57 - 0.65 

12-9 Frank 8.13 - 0.61 - - 

*1 The parameter2 of t copula is a degree of freedom. 

*2 λU and λL denote upper and lower tail-dependence coefficient respectively. 

Copula families and parameters

The different copula is applied to each pair of variables.

The vine copula model can capture complex dependence, especially the tail dependence. 24



 Log-likelihood*1 AIC*2 BIC*2 

Vine copula 415.4 -702.9 -540.8 

Gaussian copula 313.3 -476.4 -273.1 

T copula 342.4 -526.8 -326.7 

Frank copula 112.2 -222.5 -219.9 

Clayton copula 68.6 -135.1 -132.6 

*1 Larger is better. 

*2 Smaller is better. 

Comparison with benchmark copulas
◼The performance of the vine copula is the best in all criteria.

◼The Frank Copula and the Clayton Copula have only one parameter, and 
cannot express the difference by the pairs of variables.

◼The Gaussian copula and the t copula can set different correlation 
coefficients for each pair of variables, but the dependence is symmetrical 
and linear.
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Analysis of the contribution by copulas in tree 2 and above

In order to investigate how the copulas associated with the higher trees contribute,

We set vine copula models consisted of the low-dimensional trees and plot the 
log-likelihood, AIC, and BIC.

BIC is the best when we assume independence for the tree 5 and above.

26
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Simulation
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Simulation

◼We defined a survival index by the equation below, 

◼Following the capital regulations, such as ICS and Solvency Ⅱ, we 
evaluate 99.5% Value at Risk (VaR) over the one year time horizon.

◼Estimate the movement of 90𝑆65 after 1 Yr (2,000 times) and evaluate the 
difference by copula models(vine, Gaussian, and t) in the stress situation.

◼We conduct the simulation of the following two cases.

Case1: All exposures are evenly diversified in all countries.

Case2: All exposures are concentrated in Group 1 (Belgium(BEL),
Netherlands (NLD), and England & Wales(EW)).

90𝑆65 =෍

𝑗=1

𝑛

𝑤𝑗 ෑ

𝑥=65

90

1 − 𝑞𝑥
𝑗
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 99.5%ile 95%ile 50%ile 5%ile 0.5%ile 

Vine copula 1.114 1.060 1.000 0.941 0.890 

Gaussian copula 1.111 1.060 1.000 0.944 0.889 

T copula 1.122 1.058 1.000 0.944 0.893 

 

Case 1 All exposures are evenly diversified in all countries

◼No significant difference in the 95%ile and 5%ile.(red square)

◼The 99.5%ile value of the t copula is the largest, the vine copula is middle, 
and the Gaussian copula is the smallest.(blue square)

◼The Gaussian copula is minimum due to its no tail dependence.

◼The vine copula consists of a pair of copulas with and without tail 
dependence, so the tail risk is larger than a Gaussian copula.

◼The t copula shows the highest tail dependence because the dependence of 
all countries increases in the tail environment.

No significant differencet copula > vine copula> Gaussian copula
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 99.5%ile 95%ile 50%ile 5%ile 0.5%ile 

Vine copula 1.233 1.102 1.000 0.896 0.808 

Gaussian copula 1.193 1.105 1.000 0.900 0.812 

T copula 1.219 1.103 1.000 0.900 0.806 

 

Case 2 All exposures are concentrated in Group 1 

◼Similar to case 1, no significant difference in the 95%ile and 5%ile.(red square)

◼However, different from case 1, the 99.5%ile value estimated by the vine 
copula is the largest. (blue square)

◼All pair of the countries in Group 1 are modeled by the t copula with stronger 
tail dependence than the t copula model. 

◼We underestimate the dependence of the tail of concentrated exposures by 
Gaussian copula or t copula.

30
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Summary

◼We demonstrate the usefulness of a vine copula using actual data by 
following steps,
➢Use a Lee-Carter model to estimate the mortality rates of 13 countries (12 European 

countries and Australia). 

➢Model the dependence among the time-varying mortality improvement parameters of 
each country by the vine copula.

➢Demonstrate that the vine copula is superior on some measures (Log-likelihood, AIC, and 
BIC) to other benchmark copulas.

◼We obtain a dependence structure resembling the actual geographical 
relationships, which is intuitively understandable.

◼This study reveals that we underestimate the dependence of the tail risk of 
concentrated exposures in multiple countries by Gaussian copula or t copula.
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Thank you for your attention

Contact details :

Masafumi Suzuki
The Prudential Gibraltar Financial Life Insurance Co., Ltd.

masafumi_suzuki@pgf-life.co.jp
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Disclaimer:

The views or opinions expressed in this presentation are those of the authors and do not necessarily reflect
official policies or positions of the Institut des Actuaires (IA), the International Actuarial Association (IAA) and
its Sections.

While every effort has been made to ensure the accuracy and completeness of the material, the IA, IAA and
authors give no warranty in that regard and reject any responsibility or liability for any loss or damage
incurred through the use of, or reliance upon, the information contained therein. Reproduction and
translations are permitted with mention of the source.

Permission is granted to make brief excerpts of the presentation for a published review. Permission is also
granted to make limited numbers of copies of items in this presentation for personal, internal, classroom or
other instructional use, on condition that the foregoing copyright notice is used so as to give reasonable
notice of the author, the IA and the IAA's copyrights. This consent for free limited copying without prior
consent of the author, IA or the IAA does not extend to making copies for general distribution, for advertising
or promotional purposes, for inclusion in new collective works or for resale.
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 Sex Year Age 

Case 1 Female 1921-2014 65-90 

Case 2 Male 1955-2014 65-90 

Case 3 Male 1921-2014 15-64 

 

Verification of robustness by applying to other data

To examine the robustness, We apply same estimation 
procedure for the following three patterns.

➢Case 1 uses female data of the same age and period

➢Case 2 uses the post-war period (1955-2014)

➢Case 3 uses working-age population (15-64)
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1 <-> AUS,   2 < -> BEL,   3 < -> NLD,   4  <-> EW,   5 < -> DNK,   6 < -> NOR,   7 < -> FIN, 

8 <-> SWE,   9 < -> FRA,   10 < -> ITA,   11 < -> ESP,   12 < -> CHE,   13 < -> ICE 

Group 1 

Group 2 

Group 3 

 

 

ICE(13) 

EW(4) 

ESP(11) 

FRA(9) 

ITA(10) 

CHE(12) 

BEL(2) 

NLD(3) 

FIN(7) 

SWE(8) 
NOR(6) 

DNK(5) 

Group 1 

Group 2 

Group 3 

Case 1: Using female data of the same age and period

Aside form Finland(7), the dependence structure resembles the actual geographical location.
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1 <-> AUS,   2 < -> BEL,   3 < -> NLD,   4 < -> EW,   5 < -> DNK,   6 < -> NOR,   7 < -> FIN, 

8 <-> SWE,   9 < -> FRA,   10 < -> ITA,   11 < -> ESP,   12 < -> CHE,   13 < -> ICE 

Group 1 

Group 2 

Group 3 

 

 

ICE(13) 

EW(4) 

ESP(11) 

FRA(9) 

ITA(10) 

CHE(12) 

BEL(2) 

NLD(3) 

FIN(7) 

SWE(8) 
NOR(6) 

DNK(5) 

Group 1 

Group 2 

Group 3 

Case 2: Using the post-war period (1955-2014)

Aside form Norway(6), the dependence structure resembles the actual geographical location.
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1 <-> AUS,   2 < -> BEL,   3 < -> NLD,   4 < -> EW,   5 < -> DNK,   6 < -> NOR,   7 < -> FIN, 

8 <-> SWE,   9 < -> FRA,   10 < -> ITA,   11 < -> ESP,   12 < -> CHE,   13 < -> ICE 

Group 1 

Group 2 

Group 3 

 

 

ICE(13) 

EW(4) 

ESP(11) 

FRA(9) 

ITA(10) 

CHE(12) 

BEL(2) 

NLD(3) 

FIN(7) 

SWE(8) 
NOR(6) 

DNK(5) 

Group 1 

Group 2 

Group 3 

Case 3: Using working-age population (15-64)
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Aside form Norway (6) and Spain (11), the dependence structure resembles the actual geographical 

location.


