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@ Wavelet theory is a powerful tool for:

@ compressing time series or images
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e projects a signal on an orthonormal
Example: Daubechies basis of functions
wavelet function e provides a sparse representation of

the data.
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Research questions:

© Can wavelets denoise / smooth curves
of log-mortality rates?

@ Does the wavelet transform provide a
sparse representation of the surface of
log-mortality?

© Can we use wavelets for forecasting

Belgian Log-Mortality future mortality?
rates (1852-2015)
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Wavelets in a nutshell

° Wavelets are defined by parent functions: a “father” wavelet ¢
and a “mother” wavelet v orthogonal to ¢ (i.e.

Jr ()9 (x)dx =0 )

@ The wavelet basis is obtained by dilating and translating v to
form the dictionary D, that is, ¥(*32) for a> 0 and b € R.

o To ensure sparsity: a =2/ and b = k277 where k and j are
integers.

e The functions ¢ and
Yjk(x) = 2112y (2jx — k) for k,j € Z

form the available dictionary D to model the mortality curve.
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Wavelets in a nutshell

o If n¢x is the number of deaths and E; , is the exposure, an
unbiased estimator fi(t, x) of the force of mortality p(t, x)
(year t, age x) is

nt,x

ﬁ(t7x) = Et :
X

@ The discrete wavelet transform (DWT) decomposes In fi(t, x)
as a sum of wavelet functions, for a fixed calendar year ¢

J-12-1

Infi(t, x) = co(t)p(x) + D > di(t)vhju(x) .

j=0 k=0

o The vector of wavelet coefficients d(t) = (dj k(t)); , is of
dimension 27 (e.g. 27 = 128).
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DWT applied to Belgian mortality (year 2015)

@ For a given year (here 2015) Most of d; , are close to zero...
We can then “trash” many of them! But how many?

d_{j,k} for year 2015, 128 wavelets
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A chi-square test for thresholding d; «(t)

@ Donoho and Johnstone (1994) propose hard thresholding: we
cancel all wavelet coefficients smaller in absolute value than a
threshold d*:

- [ 0if |djk(t)] < d*
9.k(t) = { d; k(t) otherwise

° the shrinked mortality rates are constructed as:

Jj

In = co(t)p(x) + dik(B)e(x). (1)
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How do we choose d*?
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A chi-square test for thresholding d; «(t)

If the Cochran (1952) criterion (n¢ xGr x > 5) is fulfilled and the
population is large and Normal approximation holds:

fi(t, x) ~ Normal <,u(t,x), “(”)> . (2)

We test for:

with the Chi-Square statistics

max —~ . 2
S o XZ E (us(tax)_u(tux))

t — t,x ~ .
X=Xpmin ’us(t’ X)
x? with n — p — 1 df ( n number of observations, p number of
non-null wavelet coefficients).
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x? selection, Belgian mortality year 2015

If S; is too large, rejection of Hp. For the year 2015: the curve
1% (t, x) with 22 Daubechies wavelets (order 4) is not rejected. For
higher threshold: rejection of wu(t,x) = i°>(t, x).

Threshold p=H#of S X AIC BIC
d* dig#0 97.5%
0.01 93 10.08 16.01 -1328.73 -1077.58
0.03 60 24.74 59.34 -1380.04 -1218.01
0.05 49 38.99 7262 -1387.8 -1255.47
0.11 35 60.24 89.18 -1394.52 -1300
0.15 30 78.19 95.02 -1386.07 -1305.05
0.19 26 87.56 99.68 -1384.76 -1314.54
0.21 24 96.3 102 -1380.05 -1315.23
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x? selection, Belgian mortality year 2015

Hard shrinkage of wavelets coefficients also smoothes the curve of
log-mortality rates!
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x? selection, Belgian mortality year 2015

The 22 Daubechies wavelets (order 4) needed to approximate the
2015 mortality rates.
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DWT applied to Belgian mortality surface (1965-2015)

Remarkable observations: wavelets with null coefficients are the
same for every calendar year! A small number of wavelets is needed
for smoothing all mortality curves between 1965 and 2015.
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Multi-years wavelets selection

The selection of wavelets explaining the mortality over 1965 -
2015 is done by thresholding based on the average of wavelet
coefficients.

If T and d*are the number of years in the data set and the
threshold. If

-
1 *
7’Zdj,k(t)| <d

t=1
then we set @-7,((1“) =0 forall t € {1,..., T}
We use as criterion for d*, the AIC and BIC :

AIC = 2(T p) — 21In Lpoiss(d*, p°)
BIC = In(T n) (T p) — 2In Lpoiss(d*, 1) .

where In Lpyis(d*, 1) is the log-likelihood summed up over all
years.
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Multi-years wavelets selection

The lowest BIC is achieved with 24 Daubechies wavelets (Belgian
mortality 1965-2015)

p=#of % of x?

d*  dix#0 passed InL(d*,pu®)  AIC BIC
0.03 33 0.76 23103.12  49572.24 60734.41
0.06 30 0.76 -23167.18  49394.35 59541.78
0.09 28 0.76 -23221.25  49298.5 58769.44
0.27 22 0.31 -24318.95 50881.89 58323.34
0.3 21 0 -20637.46  61416.93 68520.13
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Multi-years wavelets selection

The time series of 24 d; ,(t) for or t = 1965 to 2015, display linear
trends! Here 6 examples:
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Multi-years wavelets selection

@ Based on this remarkable observation we regress linearly
coefficients with respect to time. For dj «(t) € d(t) we fit:

D(t)=a+Bt+E&(t)

where £(t) are independent, multivariate Normal random
vectors with zero mean and variance-covariance matrix X.

@ 62.5% of linear regressions have a R? above 75%

@ Assumption of Normality (at 5%) for residuals is satisfied for
22 time series out of 24.

@ By linear extrapolation, we simulate future wavelet coefficients
and mortality rates.
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Belgian population. Left plot: In (¢, x) in 2015 and 2046. Mid
plot: Average In pu(t, x) from 2016 to 2046 (1000 sim.). Right plot:
1000 sim. of In u(t, x), year 2046.

Forecast versus year 2015 Forecast from 2016 to 2046 Scenarios 2046
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Belgian population: Evolution of forecast cross-sectional life
expectancies from 2016 to 2045 (24 Daubechies wavelets, order 4).

Cross sectional life expectancy

Year | At birth Age 20 Age 40 Age 60 Age 80
2016 | 80.61 61.03 41.69  23.58 8.62
2020 | 81.34 61.7 42.33 24.14 8.9
2025 82.2 62.51 43.1 2481 9.25
2030 | 83.05 63.31 43.86 25.47 9.61
2035 | 83.84 64.06 44.58 26.1 9.94
2040 | 84.62 64.81 45.3 26.72 10.29
2045 | 8b.37 65.53 45.99 27.33 10.63
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Validation by back testing

@ Benchmark models:

Lee Carter 1992

Inp(t,x) = ax + Bkt

Renshaw et al. 2003

In u(t, x) = ax + Byt + Behz,

Renshaw et al. 2006

Inpu(t,x) = ax + Brkt + B°Vi—x

Cairns et al. 2006
Cairns et al. 2009

logit q(t, x) = mgl) + (x — X) n?)
logit q(t, x) = nﬁl) +(x—X) n?)

@ The six models are fitted to Belgian data from 1965 to 2005
for ages ranging from 0 to 90 years.

@ Next we forecast mortality for years 2006 to 2015 and compare
with observed ones.
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Validation by back testing

@ Sum of squared errors between forecast and real log-mortality
rates

Wavelet LC RH2D RHcoh CBD M7

(24 coef.)
2006 2,50 1.96 4.32 64.57 41.83
2007 143 137 1251 67.44 48.87
2008 1.62 1.21 29.54 65.32 56.02
2009 2.77 2.59 53.47 67.54 5941
2010 5.12 491 87.54 69.31 76.11
2011 3.77 4.03 124.45 7275 71.38
2012 6.3 6.4 179.46 74.49 78.79
2013 5.42 4.86 235.79 7157 97.82
2014 5.49 5.48 204.46 70.09 105.42
2015 5.95 5.41 380.99 71.2 107.2
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Validation by back testing

@ Population: USA. Sum of squared errors between forecast and
real log-mortality rates

Wavelet LC RH2D RHcoh CBD M7

(24 coef.)
2006 0.52 0.46 36.52 43.62 48.69
2007 0.54 0.46 65.87 44.73 57.31
2008 0.71  0.51 107.93 4457 70.68
2009 0.93 0.7 162.91 44.46 81.73
2010 1.1 0.79 233.54 4447 97.75
2011 1.06 0.83 320.87 46.39 109.47
2012 1.14 0.96 427.44 4785 124.44
2013 1.2 1.1 553.83 49.36 136.64
2014 1.23 1.23 694.87 51.32 151.17
2015 1.44 1.64 861.92 57.15 160.82
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Validation by back testing

@ Population: UK. Sum of squared errors between forecast and
real log-mortality rates

Wavelet LC RH2D RHcoh CBD M7

(24 coef.)
2006 1.58 0.64 0.53 74.86  42.67
2007 153 0.58 0.55 76.79 499
2008 2.18 0.88 0.79 78.88 58.97
2009 1.61 0.79 0.65 76.38 7251
2010 2.17 1.31 0.85 76.56 80.78
2011 2.5 1.95 0.96 7475 97.33
2012 2.98 2.36 1.74 75.64 103.88
2013 277 219 2.19 77.16 118.45
2014 3.12 2.21 2.98 82.1 12452
2015 3 1.95 4.68 85.23 138.8
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Comparison of life expectancies Belgium, USA, UK

@ Belgian, US and UK populations: Evolution of forecast
cross-sectional life expectancies at birth from 2016 to 2045
(Wavelet model, 24 coefficients).

Year | Belgium USA UK

2016 | 80.61  79.01 80.47
2020 81.34 79.61 381.16
2025 82.2 80.32 81.96
2030 | 83.05 81.01 82.73
2035 | 83.84 81.68 83.46
2040 | 84.62 82.32 84.21
2045 | 85.37 82.95 84.87
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Conclusions

Wavelets are powerful tools for analyzing mortality trends.

The chi-square test allows to smooth log-mortality rates by
wavelets shrinkage.

With both approaches : 110 death rates summarized by twenty
wavelet coefficients.

A small number of wavelets can reconstruct all curves of
mortality between 1965 and 2015.

Coefficients exhibit clear trends easy to extrapolate with a
basic multivariate linear regression.

Wavelet model widely outperforms other popular actuarial
models fitted to Belgian, US and UK populations, both in
terms of predictive errors.
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