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Abstract

Wavelet theory is known to be a powerful tool for compressing and processing time series or

images. It consists in projecting a signal on an orthonormal basis of functions that are chosen in order

to provide a sparse representation of the data. The �rst part of this article focuses on smoothing

mortality curves by wavelets shrinkage. A Chi-Square test and a penalized likelihood approach are

applied to determine the optimal degree of smoothing. The second part of this article is devoted to

mortality forecasting. Wavelet coe�cients exhibiting clear trends for the Belgian population from

1965 to 2015, they are easy to forecast resulting in predicted future mortality rates. The wavelet-

based approach is then compared with some popular actuarial models of Lee-Carter type estimated

�tted to Belgian, UK and US populations. The wavelet model outperforms all of them.

Keywords: Discrete wavelet transform, Mortality smoothing, Poisson regression, Regularization,

Lasso.
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1 Introduction and motivation

Mortality projections are known to be of crucial importance for life insurance companies and pension
funds. This topic has thus attracted a lot of attention in the actuarial literature. A variety of mortality
projection models emerged over the last 30 years, ranging from basic regression models in which age and
time are viewed as continuous features, to sophisticated nonparametric models. We refer the interested
readers to Pitacco et al. (2009) for a general overview of the topic and to dedicated chapters in Denuit
et al. (2019a,b) for applications.

To be successful, a mortality projection model must be �exible enough to capture the underlying
longevity dynamics and produce time-dependent components exhibiting a clear trend. The latter aspect
largely explained the success of the pioneering model proposed by Lee and Carter (1992) whose time index
generally appears to be markedly linear. Despite being simple and transparent, this model is however
not very �exible and may fail to capture some important aspects of mortality data under study. For this
reason, Hyndman and Ullah (2007) proposed to extend the approach proposed by Lee and Carter (1992)
by adopting a functional data paradigm combined with nonparametric smoothing (penalized regression
splines). Univariate time series are then �tted to each component coe�cient (or level parameter). How-
ever, some of these coe�cients time series do not exhibit clear trends making them di�cult to forecast.
The new approach for age-speci�c mortality projection proposed in this paper suggests that wavelets anal-
ysis remedies to this problem since time-varying coe�cients have clear trends. Extrapolation is therefore
easy and the resulting mortality forecasts appear to be accurate in terms of back-testing.

Let us now explain why wavelets may outperform alternative functional data approaches. These ap-
proaches have in common that mortality curves are decomposed into a basis of functions. Estimation is
known to be particularly easy if the functions comprised in the selected basis are orthogonal. Examples
of orthogonal bases are orthogonal polynomials (as in Renshaw at al., 1996, who decomposed mortality
curves into Legendre polynomials) and the Fourier basis. The disadvantage of the approach based on
these families is that the basis functions are not compactly supported so that �nding coe�cients providing
a reasonable �t in one region can cause the mortality curve to become implausible in remote regions.
Splines are compactly supported, but they are not orthogonal. Wavelets have the advantage that they
are compactly supported and can be de�ned so as to possess the orthogonality property. The mortality
curve is projected into the space of wavelets and expressed as a sum of functions weighted by coe�cients.
Most of these wavelet coe�cients are close to zero and considered as random to perturbations of the
underlying mortality structure. Noise is then removed by thresholding the smallest of these coe�cients.
Morillas et al. (2016) were among the �rst authors to apply the wavelets technique to mortality modeling.
They propose a year-by-year method for smoothing mortality rates based on a wavelets decomposition,
combined with piecewise polynomial harmonic techniques. The quality of the smoothing is then assessed
by mean relative errors and by Whittaker-Henderson smoothness indicators. More recently, Jurado and
Sampere (2019) use wavelet techniques to smooth mortality curves together with bootstrapping to obtain
con�dence bands around best-estimate mortality. In the present paper, we extend these previous works to
a dynamic setting and propose more formal statistical procedures based on penalized Poisson likelihood
maximization.

The present paper extends previous research on smoothing and forecasting of mortality rates in several
directions. Firstly, we use a Chi-Square statistical test to determine the optimal threshold under which
wavelet coe�cients are canceled. Next, we propose an alternative approach based on a penalized Poisson
log-likelihood. Speci�cally, Lasso regularization techniques are applied to select the optimal wavelets.
Thirdly, we perform a wavelets analysis of the Belgian mortality observed over the period 1965 to 2015.
This numerical illustration reveals that the relevant information contained in the observed death rates is
carried by a few wavelet coe�cients common to all mortality curves. Since these coe�cients exhibit clear
trends, we propose and test a multivariate regression model. A parallel may be drawn with the work of
Hyndman and Ullah (2007) who proposed to extrapolate coe�cients of a functional principal component
analysis. However, compared to their approach, wavelet coe�cients generally exhibit stable trends that
are easy to extrapolate. Finally, we benchmark the predictive power of the wavelet model to the Lee and
Carter (1992), Renshaw and Haberman (2003), Renshaw and Haberman (2006) and Cairns et al. (2006,
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2009) models based on a back-testing analysis. This benchmarking is performed for Belgian, US and UK
populations.

The remainder of the text is organized as follows. We start in Section 2 with a brief introduction to
wavelets, gathering detailed results needed for numerical implementation in the appendix to this paper.
Particular attention is paid to discrete wavelets transform since this algorithm is used in numerical
illustrations. Next, we present the Chi-Square test that can be used to adjust the level of smoothing of
log-mortality rates. We also propose an alternative smoothing method based on a least absolute shrinkage
and selection operator (Lasso). This is a L1−penalization of the log-likelihood used in high-dimensional
regressions. In the second part of this paper (Section 3), we study the dynamics of wavelets coe�cients for
the Belgian population from 1965 to 2015. The trends in these coe�cients suggest that a simple regression
model can be used to forecast future mortality. We conclude with a numerical comparison with some
popular actuarial models of Lee-Carter type based on back testing and validate our conclusions with US
and UK datasets. The �nal Section 4 brie�y concludes the paper.

2 Wavelets decomposition of the mortality curve

2.1 Wavelets for nonparametric regression

We provide here a gentle introduction to wavelets for nonparametric regression. A comprehensive pre-
sentation addressing all the issues needed for application to mortality is provided in the appendix to this
paper.

Wavelets are functions that integrate to zero, �waving� above and below the x-axis, hence their name.
Like sines and cosines in Fourier analysis, wavelets are used as basis functions in representing other func-
tions. According to Hastie et al. (2016, Chapter 5), wavelets produce a dictionary D consisting of a very
large number of basis functions that can be used to approximate any well-behaved unknown function of
interest (here, the force of mortality on the log scale). Selection and regularization methods can then be
used to restrict the entire dictionary to an optimal subset. Wavelets can thus be seen as new features
entering the score in Poisson regression. It is interesting to note that, contrarily to GAMs involving
splines or local GLMs which typically assume that the force of mortality is a smooth function of age,
wavelets are able to represent both smooth and/or locally bumpy functions in an e�cient way. Wavelets
can thus capture the transitory e�ect of epidemics for instance.

Wavelets are de�ned by parent functions: a �father� wavelet φ and a �mother� wavelet ψ both assumed
to be compactly supported. Once the mother wavelet ψ has been selected, the wavelet basis is obtained
by dilating and translating ψ to form the dictionary D, that is, ψ(x−b

a ) for a > 0 and b ∈ R. It is
convenient to take special values for a and b in de�ning the wavelet basis, to ensure sparsity: a = 2j

and b = k2−j where k and j are integers. The father wavelet φ plays the role of scaling function. The
functions

φj,k(x) = 2j/2φ
(
2jx− k

)
and ψj,k(x) = 2j/2ψ

(
2jx− k

)
for k, j ∈ Z

form the available dictionary D to model the mortality curve.

The simplest type of wavelet is certainly the Haar basis. The mother wavelet ψ for the Haar family is
the so-called Haar function de�ned on the interval [0, 1), being equal to 1 on [0, 0.5] and to −1 on (0.5, 1).
The corresponding scaling function φ is equal to 1 on the interval [0, 1) and to 0 otherwise. Dilations and
translations ψj,k of the Haar function ψ form an orthogonal basis in the space of all square integrable
functions. This means that any such function can be represented as a linear combination (possibly in�-
nite) of these basis functions.

The Haar wavelets are simple to understand, but not smooth enough for representing smooth mortality
curves. Continuous basis functions, such as Daubechies wavelets are better choices in that respect. The
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mother wavelet is not explicitly de�ned, but is implicitly computed from the method for making the
wavelet decomposition.

2.2 Discrete wavelets transform of mortality curves

Let µ(t, x) be the force of mortality (or hazard rate) for an individual aged x at time t. The survival
probability to time s ≥ t is then given by

spx(t) := exp

(
−
∫ s

t

µ(v, x+ v − t) dv
)
.

Henceforth, we assume that the force of mortality is constant on each square of the Lexis diagram, that
is, for every integer x and t,

µ(t+ τ, x+ ξ) = µ(t, x) for all 0 ≤ τ < 1 and 0 ≤ ξ < 1.

We assume that we have at our disposal a set of observations where time ranges from year tm to tM and
age from xm to xM . The number of observations for each year is denoted as n = xM − xm + 1. Available
demographic data consist of the number of deaths observed at age x last birthday during year t, nt,x,
and the corresponding exposure to risk, Et,x. Here, Et,x (sometimes called central exposure to risk at
age x) is the total time lived by people aged x last birthday in calendar year t. An unbiased estimator
µ̂(t, x) of the force of mortality is then given by

µ̂(t, x) =
nt,x
Et,x

.

In Denuit and Legrand (2018), it is formally shown that it is not restrictive to conduct inference under
the Poisson assumption for death counts, that is, by assuming that the observed number of deaths is
the realization of a random variable Nt,x that has a Poisson distribution with parameters Et,x µ(t, x) as
proposed by Brouhns et al. (2002). The corresponding expected number of deaths is thus Et,x µ(t, x).
The use of wavelets in Poisson regression is discussed e.g. in Besbeas et al. (2004).

The discrete wavelet transform (DWT) decomposes the force of mortality on the log scale viewed as
a function of age x, for �xed time t, according to formula (21) in appendix. It requires a number of data
points equal to a power of 2. Since n is generally not a power of 2 in applications, we have to interpolate
the log-force of mortality. Morillas et al. (2016) propose a piecewise polynomial harmonic technique. We
use instead a linear regression which appears to be su�cient for our purposes. We set ∆x = xM−xm

2J−1 and

calculate µ̂(t, x) for non-integer ages x ∈ {xk |xk = xm + k∆x , k = 0, ..., 2J − 1} by linear interpolation,
in order to produce a data set with n = 2J observations. DWT allows us to decompose the log-mortality
rates µ̂(t, x) into a sum of wavelets:

ln µ̂(t, x) = c0(t)φ(x) +

J−1∑
j=0

2j−1∑
k=0

dj,k(t)ψj,k(x) . (1)

The vector of parameters d(t) = (dj,k(t))j,k of dimension 2J is therefore itself the realization of a multi-

variate random variable, denoted by D(t). Indeed, if we denote by

y(t) = (ln µ̂(t, x))x=xm,...,xM

the vector of the log-force of mortality, wavelets coe�cients are linear combinations of realized log-
mortality rates:

d(t) = Ty(t) , (2)

where T is an orthogonal matrix, i.e. TT> = I. The vector d(t) is sparse: the information carried by
y(t) is redistributed among a smaller number of coe�cients, signi�cantly di�erent from zero. Wavelet
�tting can be performed with the help of the wavethresh package of R. In the next section, we test the
relevance of including all wavelets in the sum (1).

The curve of log-forces of mortality, stored in a vector y(t), is converted into a sparse vector d(t) of
same dimension. Knowing d(t) or y(t) is equivalent because we can reconstruct y(t) from d(t) with
equation (2). This sparse vector can be layered into sub-vectors dj(t) for j = 0 to J which contains
enough information for approaching the original signal by a smooth curve with an increasing accuracy
when j → J . Details and an illustration with the Haar wavelet is provided in Appendix A.2.
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2.3 A Chi-Square test for wavelets shrinkage of mortality curves

Following the idea of Donoho and Johnstone (1994,1995), large values of wavelet coe�cients most likely
correspond to the true signal whereas small coe�cients are related to noises. Hence, an e�cient estimate
d̂(t) of d(t) only keeps coe�cients that are su�ciently large. Donoho and Johnstone (1994) propose two
types of thresholding: the so-called hard and soft ones. In case of hard thresholding, we cancel all wavelet
coe�cients smaller in absolute value than a threshold, noted d∗. Precisely,

d̂j,k(t) =

 0 if |dj,k(t)| < d∗

dj,k(t) otherwise

for j ∈ {0, ..., J − 1}, k ∈ {0, ..., 2j − 1}. We denote by µ̂S(t, x) the shrinked wavelet representation of
µ̂(t, x):

ln µ̂S(t, x) = c0(t)φ(x) +

J−1∑
j=0

2j−1∑
k=0

d̂j,k(t)ψj,k(x) . (3)

The algorithm reconstructing the ln µ̂S(t, x) is called the Mallat's pyramid. It is summarized in Appendix
A.2 and we refer the reader to Mallat (1989 a,b) for further explanations. The Mallat's pyramid provides
the value of µ̂S(t, x) at non integer ages and log-forces of mortality at integer ages are next retrieved
by linear interpolation. In order to determine an acceptable threshold, we use a Chi-Square test. As
mentioned earlier, it is not restrictive for estimation purposes to assume that the number of deaths Nt,x

obeys the Poisson distribution with parameters Et,xµ(t, x). Given that the expectation and variance of
Nt,x are equal to µ(t, x)Et,x, the �rst two moments of µ̂(t, x), are given by:

E
[
µ̂(t, x)

]
= µ(t, x) and V

[
µ̂(t, x)

]
=
µ(t, x)

Et,x
.

If the size of the population is large enough, the expected number of deaths is also large and the Poisson
distribution for death counts can be approximated by the Normal one. This assumption of normality
holds if the Cochran (1952) criterion is satis�ed. Let us denote by Pt,x the size of the population of age x
on year t and q̂t,x =

nt,x

Pt,x
an estimate of the death probability. The assumption of normality is accepted

if nt,xq̂t,x ≥ 5 and nt,x(1 − q̂t,x) ≥ 5. In practice, these conditions are ful�lled for a wide range of ages.
This is why we can consider the following Gaussian approximation for the distribution of µ̂(t, x):

µ̂(t, x) ∼ Normal

(
µ(t, x) ,

µ(t, x)

Et,x

)
. (4)

To determine if a threshold is admissible, we �rst build the mortality curve µ̂S(t, x) from shrinked
coe�cients with the Mallat's pyramid. Next, we test for

H0 : µ(t, x) = µ̂S(t, x) ,

H1 : µ(t, x) 6= µ̂S(t, x) ,

with the help of statistics

St =

xmax∑
x=xmin

Et,x

(
µ̂S(t, x)− µ̂(t, x)

)2
µ̂S(t, x)

.

This statistics is approximately Chi-Square distributed with n− p− 1 where n and p are respectively the
number of observations and the number of non-null wavelet coe�cients. If St is too large, that is, exceeds
the corresponding Chi-Square quantile, we reject the null assumption H0. The age range [xm , xM ] is re-
stricted to [xmin , xmax] ⊂ [xm , xM ] so that the Gaussian approximation for Nt,x is su�ciently accurate.

Notice that Donoho and Johnstone (1995) apply instead soft-shrinkage to wavelets coe�cients. In
this approach, coe�cients are trimmed as follows:

d̂j,k(t) =

 0 if |dj,k(t)| < d∗

sgn(dj,k(t)) (|dj,k(t)| − d∗) otherwise
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where d∗ is the threshold level. This rule is closely related to optimal coe�cients β ∈ Rp of a L1−penalized
linear regression:

β = arg min
β

1

2
‖y −Xβ‖22 + λ||β||1 ,

where X is a n × p matrix of p covariates for n observations, y is the n-vector of measurements and
λ ∈ R+ is a penalty. If the matrix X is orthogonal (i.e. X>X = Ip where Ip is the identity matrix), this
optimization problem admits a closed form solution

β̂ = sgn
(
β̂LS

)
max

(
0 ,
∣∣∣β̂LS

∣∣∣− λ) ,
that is precisely the trimming formula used in soft-shrinkage. Nevertheless, we do not follow this direction
because empirical experiments reveal that the χ2 statistics rejects curves smoothed with the soft-shrinkage
approach.

2.4 Application to Belgian mortality

Let us apply the method described in the preceding sections to mortality rates observed for the Belgian
population (both genders combined) during 2015 and for ages ranging from 0 to 109 years. The data set
comes from the Human Mortality Database (HMD, www.mortality.org). In practice, raw mortality rates
at older ages are noised due to the lack of observations. There exist multiple approaches for managing
this issue, e.g. as the one proposed by Gbari et al. (2017). We circumvent this drawback by using HMD
tables which contains smoothed mortality rates for ages above 90. The HMD protocol of Wilmoth et al.
(2019) mentions indeed that �above age 80, population estimates are derived by the method of extinct
generations for all cohorts that are extinct and by the survivor ratio method for non-extinct cohorts who
are older than age 90 at the end of the observation period�.

We work with Daubechies wavelets of order 4 (the latter order leading to the most sparse models).

The left and right plots of Figure 1 respectively show the evolution of the number of non-null d̂j,k and
Chi-Square statistics in function of the threshold d∗. Table 1 reports the values of the test statistics St for
increasing thresholds. This statistics is computed with xmin = 0 and xmax = 100. The null assumption
is not rejected by decreasing the number of wavelets coe�cients to 22. This reveals that we can explain
the term structure of mortality with only 22 wavelets instead of the 128 initial ones. The last column

reports the power ratio
∥∥∥d̂(t)

∥∥∥2 / ‖y(t)‖2 that quanti�es the information captured by the shrinked model.

The values of AIC and BIC obtained under the Normal approximation for mortality rates are reported in
Table 1. Given a set of candidate models, the preferred model is the one with the lowest AIC or BIC. The
AIC and BIC reward goodness of �t assessed by the likelihood function, but also penalize models with a
large number parameters. According to the AIC and the BIC, the best smoothed curves are respectively
the ones built with 44 wavelets and 22 wavelets. The BIC usually favors sparse models compared to
the AIC. Figure 2 compares smoothed and original curves of log-mortality rates for the year 2015. The
smoothed curve still presents some oscillations at younger ages. Increasing the threshold partly removes
these oscillations but the Chi-Square test statistics St lead to a rejection of these curves.

Figure 3 presents the 22 wavelets selected among the 128 ones for smoothing log-forces of mortality.
It is not possible to assimilate these wavelets to particular age e�ects. By essence, the wavelet transform
converts a signal in a sum of wavelet functions chosen for their mathematical properties (orthogonality
and scalable) but these functions are not easily interpretable.

6



Threshold p = # of St χ2 χ2 AIC BIC Power

d∗ d̂j,k 6= 0 2.5% 97.5% ratio

0.01 93 10.08 1.69 16.01 -1328.73 -1077.58 1
0.03 60 24.74 24.43 59.34 -1380.04 -1218.01 1
0.05 49 38.99 33.16 72.62 -1387.8 -1255.47 1
0.07 44 41.95 37.21 78.57 -1394.84 -1276.02 1
0.09 37 59.34 42.95 86.83 -1391.44 -1291.52 0.9999
0.11 35 60.24 44.6 89.18 -1394.52 -1300 0.9999
0.13 32 74.4 47.09 92.69 -1385.86 -1299.45 0.9999
0.15 30 78.19 48.76 95.02 -1386.07 -1305.05 0.9998
0.17 29 79.81 49.59 96.19 -1386.45 -1308.14 0.9998
0.19 26 87.56 52.1 99.68 -1384.76 -1314.54 0.9997
0.21 24 96.3 53.78 102 -1380.05 -1315.23 0.9996
0.23 22 98.1 55.47 104.32 -1382.24 -1322.83 0.9995
0.25 22 98.1 55.47 104.32 -1382.24 -1322.83 0.9995

Table 1: Belgian population, year 2015. Goodness-of-�t statistics for di�erent wavelets thresholds.

0.05 0.15 0.25

20
30

40
50

60
70

80
90

Threshold

# 
pa

ra
m

et
er

s

0.05 0.15 0.25

20
40

60
80

10
0

Threshold

ch
i−

sq
ua

re

Figure 1: Belgian population, year 2015. Left and right plots respectively show the evolution of the
number of non-null d̂j,k and Chi-Square statistics in function of the threshold d∗. In the right graph, blue
lines correspond to the 2.5% and 97.5% Chi-Square quantiles with n− p− 1 degrees of freedom.
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Figure 2: Belgian population, year 2015. The left plot shows the smoothed and original curves of log-
forces of mortality. The right graph reports the spreads between observed and smoothed log-mortality
rates.

2.5 A Lasso approach for wavelets shrinkage

The Chi-Square test used in the preceding section can be seen as an exploratory technique since it relies
on a Normal approximation. An alternative way for tuning the degree of smoothing consists in selecting
the shrinked model to minimize a penalized Poisson log-likelihood. The Lasso (least absolute shrinkage
and selection operator) is a L1−penalization selecting relevant variables in order to enhance the accuracy
of prediction and interpretability of results. Lasso was popularized by Tibshirani (1996) for least squares
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regressions and can easily be adapted to wavelets shrinkage.

Our approach is based on a Poisson regression model, such as introduced in Brouhns et al. (2002).
Under the assumption that the number of deaths is Poisson distributed, the likelihood of observations
during year t is:

P [Nt,x = nt,x |µ(t, x)] =
(µ(t, x)Et,x)

nt,x

nt,x!
exp (−µ(t, x)Et,x) .

The log-likelihood for a hard skrinked model µS(t, x) is denoted by lnLPois

(
d∗,µS

)
and is equal to the

sum:

lnLPois(d
∗,µS) =

xM∑
x=xm

lnP
[
Nt,x = nt,x |µS(t, x)

]
(5)

=

xM∑
x=xm

(
nt,x ln

(
µS(t, x)Et,x

)
− µS(t, x)Et,x − ln (nt,x!)

)
.

If the number of observations n is at least equal to the number of non-redundant parameters p, we can
get a perfect �t by setting µS(t, x) = µ̂(t, x). The corresponding model is the saturated one. This model
is trivial and of no practical interest but since it perfectly �ts data, its log-likelihood is the best attainable
one for this distribution. The log-likelihood of the saturated model is

lnLPois(d
∗, µ̂) =

xM∑
x=xm

(nt,x ln (µ̂(t, x)Et,x)− µ̂(t, x)Et,x − ln (nt,x!)) .

The scaled deviance D∗ is de�ned as the logarithm of the likelihood ratio test of the model under
consideration against the saturated model:

D∗(µ̂,µS) = 2
(
lnLPois(d

∗, µ̂)− lnLPois(d
∗,µS)

)
= 2

xM∑
x=xm

Et,x

(
µ(t, x) ln

(
µ(t, x)

µS(t, x)

)
+ µS(t, x)− µ(t, x)

)
.

We choose the optimal threshold d∗ among the vector of absolute values of wavelet coe�cients:

d∗ ∈ |d| =
{
|dj,k(t)| j ∈ {0, ..., J − 1}, k ∈ {0, ..., 2j − 1}

}
and the vector of shrinked wavelet coe�cients d̂ is such that d̂j,k(t) = 0 if

∣∣∣d̂j,k(t)
∣∣∣ < d∗ and d̂j,k(t) =

dj,k(t) otherwise. The optimal Lasso threshold, d∗ minimizes the following penalized deviance

d∗ = arg min
d∗∈|d|

D∗(µ̂,µS) + λ

J−1∑
j=1

2J−1∑
k=1

∣∣∣d̂j,k(t)
∣∣∣ (6)

where λ ∈ R+ is the Lasso parameter determining the level of shrinkage. The function in equation (6)
corresponds to the Lagrangian of the optimization problem:

d∗ = arg min
d∗∈|d|

D∗(µ̂,µS) subject to ||d̂||1 ≤ γ , (7)

for some upper bound γ ∈ R+ on the L1 norm of d̂. We have applied the Lasso approach to mortality
rates of the Belgian population (both genders) observed in 2015 and for ages ranging from 0 to 109 years.
We choose a Lasso weight from λ = 7 to 80. For each penalty level, we �nd the optimal threshold d∗.
Next, we select the model with the lowest AIC or BIC and check the goodness of �t with the Chi-square
test of Section 2.3.

The left plot of Figure 4 shows the series of thresholds, |d|, sorted by ascending order. The right
graph shows the evolution of penalized deviances for λ = 10. Table 2 reports the statistics of smoothing
for di�erent Lasso penalties. When λ = 10, the lowest penalized deviance is achieved with 22 non-null
wavelet coe�cients and the Chi-Square test does not reject the smoothed curve. The relation between
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the penalty weight and the number of wavelet coe�cients is a staircase function of λ. Figure 5 compares
the smoothed curves of log-mortality rates for di�erent level of penalty. Visually, smoothed curves built
with 22 (λ = 25) or 95 (λ = 8) wavelets do not present signi�cant di�erences. The Lasso penalty and the
BIC leads to the selection of same wavelets. For this reason, we use BIC to measure goodness of �t in
the remainder of this work.
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Figure 4: Smoothing with Lasso, year 2015. Left plot: series of thresholds, |d|, sorted by ascending order.
Right graph penalized deviances. Lasso parameter: λ = 10.

Lasso p: # of Rejection

penalty, λ d̂j,k 6= 0 d∗ LL D AIC BIC St of H0 ?

7 101 0.01 -398.85 8.75 999.7 1272.45 8.68 No
8 95 0.01 -399.21 9.47 988.42 1244.96 9.4 No
9 95 0.01 -399.21 9.47 988.42 1244.96 9.4 No
10 22 0.42 -444.48 100.56 932.95 992.36 99.95 No
25 22 0.42 -444.48 100.56 932.95 992.36 99.95 No
50 22 0.42 -444.48 100.56 932.95 992.36 99.95 No
80 8 4.47 -2629.32 4472.37 5274.63 5296.23 3672.6 Yes

Table 2: Goodness-of-�t statistics, year 2015 for di�erent Lasso penalty.
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Figure 5: Smoothing with Lasso, year 2015. Comparison of smoothed curves for di�erent penalty weights.

3 Mortality projection

3.1 Shrinkage of the mortality surface

Let us now consider forces of mortality dynamically over time. As demonstrated in Section 2, the wavelet
shrinkage is an e�cient procedure for reducing the information contained in one curve of log-forces of
mortality. For a given calendar year, this information is carried by a few wavelet coe�cients compared
to the initial size of the curve. The natural question that arises is whether the set of relevant wavelets
varies with time. If it remains stable over time and the wavelet coe�cients exhibit some regular trend,
extrapolating these trends would allow us to forecast the evolution of mortality rates.

To answer these questions, we perform a wavelet decomposition of Belgian mortality curves (both
genders) from 1965 to 2015 for ages ranging from xm=0 to xM=109 years. Figure 6 shows the surface
of the 128 wavelet coe�cients for the period 1965-2015. On this graph, wavelet coe�cients are sorted
according to their average value. Figure 6 reveals that most wavelet coe�cients are null or close to
zero. Another remarkable observation is that wavelets with coe�cients close to 0 are the same for every
calendar year. In other words, a small number of wavelets can be used for reconstructing all curves of
mortality between 1965 and 2015.

Most of wavelet coe�cients are null for two reasons. The �rst one is related to the intrinsic feature
of wavelet functions. The wavelet analysis converts a signal, here the curve of log-forces of mortality,
into a linear combination of orthogonal and compactly supported functions. Compactness implies that
wavelet functions are non-null only on a small sub-domain of R. This feature is visible in Figure 12 of
the Appendix A1. Therefore, we can decompose locally a signal over a time interval with a �nite number
of wavelets and these wavelets will not interfere with the decomposition of the same signal to some later
time interval. This is a great advantage of wavelet transform over Fourier's transform. In a Fourier's
transform, we project the signal over orthogonal sinusoidal functions. These basis functions are non-null
over R, excepted for a countable number of points. Therefore, the local decomposition of a signal in a
Fourier's basis over a time interval is pertubated by the projection of the signal over the entire timeline.
The consequence of this lack of compactness is that we need more Fourier than wavelet basis functions to
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explain the same signal. The second reason is related to the properties of the Daubechies wavelet. These
wavelets have vanishing vanishing moments up to order M = 4. It o�ers then a sparse representation
of polynomials up to the fourth degree. Given that the curve of log-forces of mortality for ages between
30 and 80 years old), may be �tted by a polynomial function of low order, most of wavelets coe�cients
explaining mortality trends over this range of ages are null.
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Figure 6: Surface of wavelet coe�cients, period: 1965-2015.

To select the optimal number of wavelets, we apply a hard thresholding based on the average of
wavelet coe�cients. Let us respectively denote by T and d∗, the number of years in the data set and the
threshold. If

1

T
|

T∑
t=1

dj,k(t)| < d∗ j ∈ {0, ..., J − 1}, k ∈ {0, ..., 2j − 1}

then we set d̂j,k(t) = 0 for all t ∈ {1, ..., T}. The statistical signi�cance of each smoothed mortality
curves could be checked with the help of the Chi-Square testing procedure described above. However, in
practice, this procedure fails to produce a parsimonious representation for all years. Whatever the level
of thresholding, there is always a limited number of smoothed curves that fail the Chi-Square test due
to abnormal shocks on mortality curves like heatwaves, �u epidemics or simply because of the volatil-
ity of estimators of log-forces of mortality. Explaining these temporary perturbations requires to add a
few wavelets that are useless for explaining mortality observed during normal years. Here, we opt for
an alternative method based on BIC and AIC that is more tolerant with respect to deviations between
smoothed and original log-forces of mortality.

This approach is based on the Poisson regression model introduced in Section 2.5. The Poisson log-
likelihood denoted by lnLPois(d

∗,µS) is de�ned in (5) for a single year. Here, this log-likelihood is
summed up over all years to get

lnLPois(d
∗,µS) =

T∑
t=1

xM∑
x=xm

(
nt,x ln

(
µS(t, x)Et,x

)
− µS(t, x)Et,x − ln (nt,x!)

)
.
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The scaled deviance D∗ is de�ned in the same way:

D∗(µ̂,µS) = 2

T∑
t=1

xM∑
x=xm

Et,x

(
µ(t, x) ln

(
µ(t, x)

µS(t, x)

)
+ µS(t, x)− µ(t, x)

)
.

This Poisson log-likelihood is used to calculate the AIC and BIC:

AIC = 2 (T p)− 2 lnLPoiss(d
∗,µS) ,

BIC = ln(T n) (T p)− 2 lnLPoiss(d
∗,µS) .

Threshold p = # of % of Chi-Square

d∗ d̂j,k 6= 0 tests passed lnL(d∗,µS) D∗(µ,µS) AIC BIC

1 0.03 33 0.76 -23103.12 4920.3 49572.24 60734.41
2 0.06 30 0.76 -23167.18 5048.34 49394.35 59541.78
3 0.09 28 0.76 -23221.25 5157.44 49298.5 58769.44
4 0.12 24 0.59 -23785.23 6283.42 50018.46 58136.4
5 0.15 24 0.59 -23785.23 6283.42 50018.46 58136.4
6 0.18 24 0.59 -23785.23 6283.42 50018.46 58136.4
7 0.21 24 0.59 -23785.23 6283.42 50018.46 58136.4
8 0.24 24 0.59 -23785.23 6283.42 50018.46 58136.4
9 0.27 22 0.31 -24318.95 7350.23 50881.89 58323.34
10 0.3 21 0 -29637.46 17987.36 61416.93 68520.13

Table 3: Goodness-of-�t statistics of goodness of �t for shrinked mortality curves, period 1965-2015.
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Figure 7: Heat-map of di�erences between smoothed and observed log-mortality rates.

The optimal threshold level d∗ is either the one minimizing the AIC or the BIC, depending upon the
sought level of sparsity. Table 3 contains the AIC, BIC, log-likelihood for a range of thresholds. The
lowest AIC and BIC are obtained with d∗ ∈ [0.12 0.24] and the number of non-null wavelet coe�cient is
24. We have also computed the Chi-Square statistics for each years between 1965 and 2015. This statistics
is computed with xmin = 0 and xmax = 109. The third column of Table 3 reports the percentage of
smoothed curves that pass the Chi-Square test of Section 2.3. For a threshold level in [0.12, 0.24], 59%
of smoothed curves are accepted. Table 3 reveals that thresholding wavelet coe�cients with an absolute
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value higher than 0.30, causes a jump in the deviance. Figure 7 shows the heat-map of di�erences
between smoothed and observed log-mortality rates. We observe in the upper part of this map an
increasing straight line. This line corresponds to cohorts born around the second world war. These
cohorts experience a higher mortality rates than the other ones.

3.2 Mortality forecasting

In the previous section, we have seen that the information contained in the mortality surface from 1965 to
2015 may be summarized by a surface of p =24 wavelet coe�cients observed over 51 years. Figures 8, 9,
10 and 11 shows the evolution over time of these 24 time series of wavelets coe�cients. For most of them,
we observe a clear linear increasing or decreasing trend. Based on this remarkable observation we regress
linearly these coe�cients with respect to time. Precisely, all non-null wavelet coe�cients d̂j,k(t) ∈ d̂(t)
obey the following dynamics:

D̂(t) = α+ β t+ E(t)

where E(t) are mutually independent, multivariate Normal random vectors with zero mean vector variance-
covariance matrix Σ of dimension p × p. The p−vectors α and β contain the intercepts and regression
factors. Table 4 reports statistics of goodness of �t for residuals. The Shapiro-Wilk test validates the
assumption of Normality (at 5% con�dence level) for 22 time series out of 24. Furthermore, 62.5% of
linear regressions have a R2 above 75% while 16.66% of regressions have a R2 smaller than 25%. For 12
regressions, the Llung-Box test validates the assumption of independent increments (5% con�dence level).
These statistics con�rm that linear regressions succeed to explain the evolution of wavelets coe�cients.

Wavelets p-val. Gaussian p-val. independent
n° Shapiro residuals? R2 Llung-Box increments?

1 0.06 yes 0.98 0 no
2 0.83 yes 0.85 0 no
3 0.46 yes 0.77 0 no
4 0.62 yes 0.97 0.23 yes
5 0.64 yes 0.69 0 no
6 0.03 no 0.14 0.04 no
7 0.21 yes 0.76 0 no
8 0.72 yes 0.98 0.02 no
9 0.53 yes 0.84 0.92 yes
10 0.37 yes 0.83 0.14 yes
11 0.36 yes 0.77 0.22 yes
12 0.17 yes 0.27 0 no
13 0 no 0.72 0 no
14 0.6 yes 0.97 0.06 yes
15 0.8 yes 0.81 0.19 yes
16 0.9 yes 0.36 0.5 yes
17 0.5 yes 0.05 0.18 yes
18 0.82 yes 0.96 0 no
19 0.64 yes 0.81 0.31 yes
20 0.99 yes 0.04 0.23 yes
21 0.1 yes 0.11 0.34 yes
22 0.85 yes 0.97 0 no
23 0.47 yes 0.97 0 no
24 0.18 yes 0.74 0.8 yes

Table 4: Statistics about linear regressions of the 24 wavelet coe�cients, period 1965-2015.

Remark. A better �t can be achieved with an auto-regressive model of the form

d̂(t) = α+ β1 t+ β2 � d̂(t) + ε(t)

where � is the Hadamard product and α, β1 and β2 are p-vectors. For 95.83% of wavelets, the Shapiro-
Wilk test does not reject the assumption of Normality. We validate in 95.83% of cases, the assumption of
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independent increments. However, forecast life expectancy with this model slightly decreases from 2015
to 2020 before increasing again and the auto-regressive model has been discarded for this reason.
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Figure 8: Time-series of coe�cients of wavelets 1 to 6. The red dotted line is the linear regression.
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Figure 9: Time-series of coe�cients of wavelets 7 to 12. The red dotted line is the linear regression.
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Figure 10: Time-series of coe�cients of wavelets 13 to 18. The red dotted line is the linear regression.
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Figure 11: Time-series of coe�cients of wavelets 19 to 24. The red dotted line is the linear regression.

By linear extrapolation, we can simulate future log-mortality rates. The left plot of Figure 12 com-
pares 2015 log-forces of mortality to the average simulated mortality rates in 2046, computed with 1000
simulations. The mid plot shows the evolution of average future log-mortality rates from 2016 to 2046.
These two graphs clearly emphasize that mortality rates will continue to decline according to the wavelet
model. The right panel of Figure 12 displays 1000 simulated curves of mortality rates for the year 2046.
This underlines the ability of our model to generate various scenarios of mortality. To better grasp the
amplitude of this reduction of mortality, we have computed cross-sectional life expectancy from 2016 to
2045. Table 5 reports these statistics at birth and at ages 20, 40, 60 and 80. The wavelet model forecast
an increase of the life expectancy at birth from 80.61 in 2016 up to 85.37 years in 2045. At age 80, the
average gain of longevity over this period is around 2 years.
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Figure 12: Left plot: log-forces of mortality in 2015 and 2046. Mid plot: Average log-forces of mortality
from 2016 to 2046. Right plot: 1000 scenarios of log-mortality rates, year 2046.

Cross sectional life expectancy
Year At birth Age 20 Age 40 Age 60 Age 80
2016 80.61 61.03 41.69 23.58 8.62
2020 81.34 61.7 42.33 24.14 8.9
2025 82.2 62.51 43.1 24.81 9.25
2030 83.05 63.31 43.86 25.47 9.61
2035 83.84 64.06 44.58 26.1 9.94
2040 84.62 64.81 45.3 26.72 10.29
2045 85.37 65.53 45.99 27.33 10.63

Table 5: Evolution of forecast cross-sectional life expectancies from 2016 to 2045.

3.3 Validation by back testing

In order to benchmark the predictive power of the wavelet approach, we compare it to competitors
proposed Lee and Carter (1992), Renshaw and Haberman (2003), Renshaw and Haberman (2006), Cairns
et al. (2006) and Cairns et al. (2009). In the Lee Carter (henceforth referred to as LC) model, the log
mortality rates are related to ages as follows:

lnµ(t, x) = αx + βxκt . (8)

where αx ∈ Rxmax is a constant vector representing the permanent impact of age on mortality. Whereas
βx ∈ Rxmax is a constant vector that quantify the marginal e�ect of the latent factor κt on mortality
at each age. κt is a latent process that describes the evolution of mortality over time. We consider a
bivariate extension (henceforth referred to as RH 2D) as proposed by Renshaw and Haberman (2003).
In the RH 2D, the log-force of mortality is a linear combination of 2 time latent factors, κ1t and κ

2
t , with

covariates that depend on the age as follows:

lnµ(t, x) = αx + β1
xκ

1
t + β2

xκ
2
t , (9)

where β1
x and β2

x ∈ Rxmax and κ1t , κ
2
t are latent processes. The next model that we consider (henceforth

referred to as RH coh), adds a cohort e�ect in the dynamic of log-force of mortality:

lnµ(t, x) = αx + β1
xκt + β2γt−x , (10)

where β2 ∈ R represents the marginal e�ect of a generation factor γt−x on mortality. In a fourth test, we
�t the CBD ( Cairns-Blake-Dowd, 2006) model for which:

logit q(t, x) = κ
(1)
t + (x− x̄)κ

(2)
t , (11)
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where x̄ is the average of ages. The last model, proposed by Cairns et al. (2009), adds a cohort e�ect to
the CBD model and is referred to as M7:

logitq(t, x) = κ
(1)
t + (x− x̄)κ

(2)
t +

(
(x− x̄)

2 − σ̂2
x

)
κ
(3)
t + γt−x. (12)

In this equation, σ̂2
x is the variance of ages and γt−x is a generation factor. The LC, RH 2D, RH coh,

CBD and M7 models are estimated by log-likelihood maximization with the R package StMoMo.

The six models are �tted to Belgian mortality curves (both genders) from 1965 to 2005 for ages ranging
from 0 to 90 years (including older ages causes numerical instabilities for the RH coh model). Next we
forecast log-forces of mortality for years 2006 to 2015 and compare with observed ones. For the RH
coh model, we exclude all cohorts that have fewer than three observations. Table 6 reports the sum of
squared errors between predicted and observed log-mortality rates. Whatever the year, the wavelet model
outperforms its 3 competitors. The RH coh model has the lowest performance due to the di�culty to
extrapolate the time series of γt−x, which is non-linear over the considered period.

Wavelet LC RH 2D RH coh CBD M7
(24 coef.)

2006 2.11 2.59 1.96 4.32 64.57 41.83
2007 1.14 1.43 1.37 12.51 67.44 48.87
2008 1.29 1.62 1.21 29.54 65.32 56.02
2009 1.77 2.77 2.59 53.47 67.54 59.41
2010 4.01 5.12 4.91 87.54 69.31 76.11
2011 3.01 3.77 4.03 124.45 72.75 71.38
2012 5.18 6.3 6.4 179.46 74.49 78.79
2013 3.81 5.42 4.86 235.79 71.57 97.82
2014 4.00 5.49 5.48 294.46 70.09 105.42
2015 4.69 5.95 5.41 380.99 71.2 107.2

Table 6: Sum of squared errors between forecast and real log-mortality rates.

Table 7 presents the log-likelihoods, deviances and AIC of the six models. The lowest deviance is
obtained with the wavelet model. Notice however that due to its high number of parameters, the best
AIC is obtained with a RH 2D model. These results con�rm that the wavelet model is a reliable alternative
to existing approaches for modeling log-mortality rates.

p: # of
lnL(d∗,µS) D∗(µ,µS) AIC parameters

Wavelets -16636.68 4734.78 35241.35 984
Lee-Carter -17182.62 5729.67 34807.24 221
RH 2D -16716 4863.88 34130.00 349
Rensh. Haber. -248575.96 5855.26 497841.93 345
CBD -263059.84 492684.73 526283.69 82
M7 -415382.74 166349.05 831255.47 245

Table 7: Goodness-of-�t statistics, period 1965-2005.

3.4 US and UK populations

We �t a model with 24 wavelets to the US and UK populations and benchmark it to LC, RH 2D, RH coh,
CBD and M7 models. As for the Belgian population, the χ2 statistics does not reject most of smoothed
curves obtained with this approach. The six models are �tted to mortality rates (both genders) from 1965
to 2005 for ages ranging from 0 to 90 years. Next, we forecast log-forces of mortality for years 2006 to 2015.
Tables 8 and 9 reports the sum of squared errors between modelled and observed log-mortality rates. The
best performance is achieved by the Wavelet model. Surprisingly, the cohort model , RH coh, has an ex-
cellent predictive power for the UK population compared to its performance with Belgian an US datasets.

As in Sub-section 3.2, we forecast log-mortality rates from 2016 to 2046 for US and UK populations.
For this purpose, the wavelets model is estimated with data from 1965 to 2015 and for ages from 0 to 109
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years. Tables 10 and 11 reports the forecast cross-sectional life expectancies. UK Figures are comparable
to Belgian life expectations of Table 5. Whereas the wavelets model predicts a lower increase of life
expectancy at birth for the US than for UK or Belgium. In 2045, the life expectancy at birth in Belgium
is around 85 years whereas it is only 83 years for US.

Wavelet LC RH 2D RH coh CBD M7
(24 coef.)

2006 0.26 0.52 0.46 36.52 43.62 48.69
2007 0.25 0.54 0.46 65.87 44.73 57.31
2008 0.29 0.71 0.51 107.93 44.57 70.68
2009 0.54 0.93 0.7 162.91 44.46 81.73
2010 0.62 1.1 0.79 233.54 44.47 97.75
2011 0.6 1.05 0.83 320.87 46.39 109.47
2012 0.68 1.14 0.96 427.44 47.85 124.44
2013 0.8 1.2 1.1 553.83 49.36 136.64
2014 1.03 1.23 1.23 694.87 51.32 151.17
2015 1.44 1.32 1.64 861.92 57.15 160.82

Table 8: US population. Sum of squared errors between forecast and real log-mortality rates.

Wavelet LC RH 2D RH coh CBD M7
(24 coef.)

2006 0.45 1.58 0.64 0.53 74.86 42.67
2007 0.37 1.53 0.58 0.55 76.79 49.9
2008 0.76 2.18 0.88 0.79 78.88 58.97
2009 0.63 1.61 0.79 0.65 76.38 72.51
2010 1.14 2.17 1.31 0.85 76.56 80.78
2011 1.78 2.5 1.95 0.96 74.75 97.33
2012 2.15 2.98 2.36 1.74 75.64 103.88
2013 1.76 2.77 2.19 2.19 77.16 118.45
2014 1.8 3.12 2.21 2.98 82.1 124.52
2015 1.52 3 1.95 4.68 85.23 138.8

Table 9: UK population. Sum of squared errors between forecast and real log-mortality rates.

Cross sectional life expectancy (US)
Year At birth Age 20 Age 40 Age 60 Age 80
2016 79.01 59.71 40.76 23.09 8.9
2020 79.61 60.25 41.26 23.5 9.08
2025 80.32 60.89 41.86 23.98 9.29
2030 81.01 61.51 42.45 24.47 9.51
2035 81.68 62.13 43.03 24.94 9.73
2040 82.32 62.71 43.58 25.39 9.94
2045 82.95 63.3 44.13 25.84 10.15

Table 10: US: evolution of forecast cross-sectional life expectancies from 2016 to 2045.
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Cross sectional life expectancy (UK)
Year At birth Age 20 Age 40 Age 60 Age 80
2016 80.47 60.93 41.56 23.25 8.55
2020 81.16 61.57 42.19 23.78 8.79
2025 81.96 62.31 42.91 24.39 9.08
2030 82.73 63.04 43.62 25 9.38
2035 83.46 63.73 44.29 25.57 9.66
2040 84.21 64.44 44.98 26.17 9.97
2045 84.87 65.07 45.59 26.7 10.24

Table 11: UK: Evolution of forecast cross-sectional life expectancies from 2016 to 2045.

4 Conclusions

The numerical illustrations performed in this paper suggest that wavelets are powerful tools for analyz-
ing mortality trends. The �rst part of this work proposes two alternative approaches to optimize the
smoothing of log-mortality rates by wavelets shrinkage. The �rst method is based on a Chi-Square test
built with a Gaussian approximation of log-forces of mortality. The second one uses a penalized Poisson
likelihood to �nd a compromise between statistical relevance and sparsity. Both approaches reveal that
a mortality curve with 110 death rates may be summarized by around twenty wavelet coe�cients.

The second part of this article focuses on mortality forecasting. We show that the set of signi�cant
wavelet coe�cients is stable over the last half century. A small number of wavelets can be used for
reconstructing all curves of mortality between 1965 and 2015. Furthermore, most of these coe�cients
exhibit clear trends that can be extrapolated with a basic multivariate linear regression. This technique
allows us to predict that the cross-sectional life expectancy for the Belgian population (both gender) will
increase on average up to 85.37 years in 2045. In the last section of this work, we have demonstrated
that the wavelet model widely outperforms other popular actuarial models �tted to Belgian, US and UK
populations, both in terms of goodness of �t and predictive errors.
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APPENDIX

A Wavelets in a nutshell

A.1 De�nition

The wavelets analysis consists to project a function on an orthornormal basis. We denote by L2(R) the
space of square-integrable functions equipped with the inner product and the norm respectively de�ned
by

〈f, g〉 =

∫ +∞

−∞
f(x)g(x)dx ||f || =

√
〈f, f〉 ,

for f, g ∈ L2 (R). Functions f and g are orthonormal if they are orthogonal 〈f, g〉 = 0 and of norm equal
to 1. L2(R) is an Hilbert space for this inner product. Recall that a Hilbert space is a complete inner
product space, that is, all Cauchy sequences converge to a limit in this space. An orthornormal basis of
V ⊂ L2(R) is a maximal subset B = (fk)k∈Z of orthonormal functions such that if g ∈ V with 〈g, fn〉 = 0
for all fn ∈ B then g = 0.

De�nition The multi-resolution analysis consists of a collection of closed subspace of L2(R), noted
(Vj)j∈Z and of a scaling function, also referred to as father wavelet, φ ∈ V0, satisfying the following con-
ditions. Firstly, the function φ forms an orthonormal basis of V0 by translation. Every function f ∈ V0
can then be rewritten as an in�nite sum:

f(x) =
∑
k∈Z
〈φ(x− k), f(x)〉φ(x− k) .

Secondly, the spaces Vj are nested in the sense that Vj−1 ⊂ Vj for all j ∈ Z and is dense in L2(R). The
only function belonging to all (Vj)j∈Z is the null function. Finally, we have the following properties for
all j ∈ Z:

f(x) ∈ V0 ⇐⇒ f(2jx) ∈ Vj , (13)

f(x) ∈ V0 ⇐⇒ f(x− k) ∈ V0 .

If sets (Vj)j∈Z and scaling function φ satisfy the conditions of the multi-resolution analysis, the norms of

the projection of any function f ∈ L2(R) on Vj , noted Pjf for j ∈ Z, satisfy the relation:

||Pjf || ≤ ||Pj+1f || ,

and limj→∞ Pjf = f given that (Vj)j∈Z are dense. We can also show that limj→−∞ Pjf = 0. We refer

the reader to Nickolas (2017) for details. Furthermore, conditions (13) imply that

φj,k(x) = 2j/2φ
(
2jx− k

)
k ∈ Z

are in Vj and forms an orthonormal basis of this set.

An example of father wavelet φ satisfying the conditions of the multi-resolution analysis is:

φ(x) =

{
1 0 ≤ x < 1

0 otherwise .
(14)

Since (φ0,k(x))k∈Z and (φj,k(x))k∈Z respectively form an orthonormal basis of V0 and Vj , Vj is the set of
piecewise constant functions:

Vj =

{
f ∈ L2 (R) : f is constant on

[
k

2j
,
k + 1

2j

)
for all k ∈ Z

}
.

The projection of any function f of L2(R) on Vj is then its piecewise constant approximation. For this
reason, the spaces Vj can be referred as approximation spaces.
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In the remainder, we denote by Wj = V ⊥j , the orthogonal complement of Vj in Vj+1. Every function f
of Vj+1 admits therefore a unique representation as

f = fj + f⊥j

where fj = Pjf ∈ Vj and f⊥j ∈Wj . By induction, we can show that for each i ∈ Z, f ∈ Vi is expressible
as a convergent series f =

∑i
−∞ wj where wj ∈ Wj . We say that Vi is the direct sum of Wj and denote

it by:

Vi =
i
⊕

j=−∞
Wj .

We now de�ne a wavelet as follows:

De�nition A wavelet is a function ψ of L2(R) whose scaled, dilated and translated copies

ψj,k(x) = 2j/2ψ
(
2jx− k

)
k, j ∈ Z (15)

form an orthornormal basis of L2(R).

The link between the multi-resolution analysis and wavelets comes from the following theorem. For
a proof, see Theorem 6.6 in Nickolas (2017).

Theorem Let us consider spaces (Vj)j∈Z and a scaling function φ ∈ V0 that form a multi-resolution

analysis. If (ψj,k)k∈Z ∈ Vj+1 is a family of functions such that

{φj,k : k ∈ Z} ∪ {ψj,k : k ∈ Z}

is an orthonormal basis for Vj+1, then ψ is a wavelet, referred as mother wavelet.

In the multi-resolution analysis, we know that the collection (φj,k)k∈Z form an orthonormal basis of

Vj . Hence, for any function f ∈ L2(R),the series

fj = Pjf =
∑
k∈Z

αj,kφj,k

where αj,k = 〈f, φj,k〉 is the projection of f into Vj . It is the best approximation to f in Vj and Vj is
for this reason, referred to as an approximation space. On the other hand, the projection of f on Vj+1

admits an unique decomposition as
fj+1 = fj + f⊥j

where fj ∈ Vj and f⊥j ∈Wj . Given that f⊥j admits the decomposition

∞∑
k=−∞

βj,kψj,k = f⊥j ,

where βj,k = 〈f, ψj,k〉, ψj,k is an orthonormal basis of Wj = V ⊥j . The series
∑∞

k=−∞ βj,kψj,k provides
then the extra detail which when added to the best approximation of f in Vj , provide the best approx-
imation in Vj+1. The space Wj is for this reason referred to as the detail space. The fact that ψ is a
wavelet is a direct consequence of ψj,k ∈ Vj+1 and of conditions (13).

When the scaling function φ is de�ned by (14), the associated wavelets are called Haar wavelets. These
wavelets are obtained by translating, scaling and dilating a function H :

H(x) =


1 0 ≤ x < 1

2

−1 1
2 ≤ x < 1

0 otherwise .

The functions Hj,k for k ∈ Z are then de�ned by

Hj,k(x) = 2j/2H(2jx− k) ,

23



for j, k ∈ Z. The function Hj,k is null outside its support
[

k
2j ,

k+1
2j

)
. The Hj,k form an orthornormal

basis of Wj and any function f ∈ L2(R) admits the projection into Vj+1

fj+1 =
∑
k∈Z

cj,kφj,k +
∑
k∈Z

dj,kHj,k .

By recurrence, we also have that

fj+1 =
∑
k∈Z

c0,kφ0,k +

j∑
j′=0

∑
k∈Z

dj′,kHj′,k .

If the support of the function f is bounded, e.g. [0, 1], then

fj+1(x) = c0φ(x) +

j∑
j′=0

2j−1∑
k=0

dj′,kHj′,k(x) . (16)

where c0φ =c0 =
∫ 1

0
f(x)dx can be interpreted as the average of f(x) over [0, 1].
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Figure 13: Daubechies wavelets with vanishing moments up to M=1, 2, 4, 8. For M=1, we retrieve the
Haar wavelet.

The Haar wavelet is nevertheless not the only function compatible with the multi-resolution analysis.
From the ladder of subspaces, Vj−1 ⊂ Vj for all j ∈ Z, the space V0 is a subspace of V1. Since (φ1,k)k∈Z is
a basis for V1 and φ ∈ V0 ⊂ V1, any eligible scaling function is solution of the dilation or scaling equation

φ
(x

2

)
=
∑
k∈Z

akφ(x− k) , (17)

where ak =
〈
φ
(
x
2

)
, φ (x− k)

〉
. Wavelets are orthogonal to the subspaces generated by scaled, translated

scaling functions. Therefore, the wavelets ψ(.) associated to any scaling function satisfying (17) is de�ned
by

ψ(x) =
∑
k∈Z

(−1)ka1−kφ(2x− k). (18)
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For a proof see Theorem 6.9 in Nickolas (2017). Scaling and wavelet functions, solution of equations (17)
and (18), may be used for constructing by recursion the projection of f on Vj+1:

fj+1(x) = Pj+1f =
∑
k∈Z

cj,kφj,k(x) +
∑
k∈Z

dj,kψj,k(x) . (19)

In the next section, we will see how to infer scaling and wavelets coe�cients.

The Daubechies Wavelets ψM is a family of functions satisfying equations (17) and (18) with vanish-
ing moments up to a certain order M , i.e. :∫ +∞

−∞
xmψM (x)dx = 0 for m = 0, 1, ...,M . (20)

Using wavelets with vanishing moments allows a sparse representation of piecewise polynomial functions
of L2(R). Unfortunately, there does not exist any closed form expression for the Daubechies wavelets and
its scaling function. However, they are easily numerically computable because coe�cients ak in equation
(17) are known. The Daubechies scaling function is largely asymmetric. As alternative, Daubechies
has proposed the least asymmetric wavelet, that has vanishing moments with better symmetry. Coi�ets
have similar properties to Daubechies wavelets except the scaling function is also chosen so that it has
vanishing moments. In other words, the scaling function satis�es (20) with φ instead of ψ. There exist
many others wavelets, for instance in the complex space, that are out of the scope of this article.

A.2 Discrete Wavelet Transform (DWT)

Let us assume that we observe the values yi = f(xi) of a L2(R) function, for an equispaced sequence
{x1, . . . , xn} of length 2J . The discrete wavelet transform (DWT) computes a vector of parameters as in
equation (15), consisting of the last, most coarse, scaling coe�cient c0 and the wavelet coe�cients dj,k
for j = 0, ..., J − 1 and k = 0, ..., 2j − 1. These coe�cients allows us to construct an approximation fJ of
f :

fJ(x) = c0φ

(
x− xm
xM − xm

)
+

J−1∑
j=0

2j−1∑
k=0

dj,kψj,k

(
x− xm
xM − xm

)
, (21)

with fJ(xi) = yi for i = 1, ..., n.

If we denote hk = 2−1/2ak, the scaling equation (17) may be rewritten as

φ (x) =
∑
k∈Z

hkφ1,k(x) . (22)

If we de�ne gk = (−1)k2−1/2a1−k, the wavelet equation (18) becomes

ψ(x) =
∑
k∈Z

gkφ1,k(x) . (23)

Even if the wavelets do not have any closed-form expression, the value of coe�cients (hk)k∈Z and (gk)k∈Z
are computable and are the only information needed for estimating scaling and wavelets coe�cients in
the decomposition (21).

We �rst show that it is possible to obtain a coarser-level wavelet coe�cients in equation (19) from
�ner ones (level j − 1 from j). As (φj−1,k)k∈Z is an orthonormal basis for Vj−1, we have that

cj−1,k =

∫
R
f(x)φj−1,k(x)dx . (24)
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On the other hand, from equation (22), we can develop φj−1,k as follows

φj−1,k(x) = 2(j−1)/2φ
(
2j−1x− k

)
= 2(j−1)/2

∑
n∈Z

hnφ1,n
(
2j−1x− k

)
= 2j/2

∑
n∈Z

hnφ
(
2jx− 2k − n

)
=

∑
n∈Z

hnφj,n+2k (x) . (25)

If we substitute (25) into (24), then we infer that

cj−1,k =
∑
n∈Z

hn

∫
R
f(x)φj,n+2k (x) dx

=
∑
n∈Z

hncj,n+2k .

Or after rearrangement,

cj−1,k =
∑
n∈Z

hn−2kcj,n . (26)

In a similar manner, we can prove that

dj−1,k =
∑
n∈Z

gn−2kcj,n . (27)

Computing with accuracy the initial �ne father coe�cient (layer J) is a hard task. However in practice,
the wavelet transform is initialized using the original function samples, i.e.

cJ,k = yk k = 0, 1, . . . , 2J . (28)

This approach is e.g. implemented in the R package wavetresh and is satisfactory for our analysis. We
also use a technical assumption of periodicity for computing coe�cients at the beginning and end of
the series. Notice however that is method of initialization is sometimes called the wavelet crime (see
Strang and Nguyen, 1996). Equations (26), (27) and (28) allows us to calculate recursively the vector of
coe�cients

d =
(
c0, (dj,k)j∈{0,...,J−1},k∈{0,...,2j−1}

)
.

Notice also that these coe�cients are obtained by linear transformation of yk for i ∈ {1, ..., 2J}. If the
vector of (yi)i∈{1,...,2k} is denoted by y then we can show that

d = Ty

where T is an orthogonal matrix, i.e. TT> = I. Another consequence is that

‖d‖2 = ‖y‖2 .

Given that the vector d is sparse, the information carried by y, and measured ‖y‖2, referred to as the
�power�, is redistributed among a smaller number of coe�cients, signi�cantly di�erent from zero.

Finally, Mallat (1989 a,b) has shown that we can retrieve scaling coe�cients of level j from those of
level j − 1 by inverting equations (26) and (27):

cj,n =
∑
k∈Z

hn−2kcj−1,k +
∑
k∈Z

gn−2kdj−1,k . (29)

This relation is often referred to as the Mallat's pyramid. In this framework, the function f(xk) is
approached by fJ(x) =

∑
k cJ,k1{x=xk}.
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