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Abstract

In this paper, we develop stochastic models to determine the impact of a massive

cyber attack on an insurance portfolio. The model is based on the classical SIR

(Susceptible - Infected - Recovered) epidemiological model. For a given type of

attack, we provide a general framework to quantify the impact on the portfolio of

such an event, and calibrate response policies for the insurance company (such as

prevention and reaction time to the attack). We also consider the possibility of a

”collapse” of the response system, that could happen if too many policyholders are

affected simultaneously. In which case, the insurance company is unable to bring

assistance to the whole affected policyholders. We provide sharp bounds for the

probability that such an event occur, and a way to simulate ”cyber-hurricanes”. As

an illustration, we replicate the impact of a Wannacry-type event on an insurance

portfolio.
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2 Sorbonne Université, CNRS, Laboratoire de Probabilités, Statistique et Modélisation, LPSM,

4 place Jussieu, F-75005 Paris, France,

E-mails: caroline.hillairet@ensae.fr, olivier.lopez@sorbonne-universite.fr

1



1 Introduction

Cyber-insurance is a rising field responding to the growing weight of cyber-risk. Apart

from evaluating the risk in a classical frequency/severity paradigm, many massive cyber

events (like Wannacry or NotPetya for example) raised a major concern for insurers and

risk managers: how is it possible to absorb an accumulation scenario? By accumulation,

one means that, due to the systemic characteristic of cyber-risk, loss of mutualization can

occur if a large number of policyholders is attacked in a short amount of time. In this

paper, we propose a general framework to design and simulate accumulation scenarii, in

order to understand their impact on an insurance portfolio. In particular we provide a

framework that allows to quantify the impact of prevention and fast reaction to diminish

the cost of such an episode.

The rest of the paper is organized as follows. In Section 2, we describe the general

model. Section 3 provides theoretical results allowing to approximate the evolution of the

portfolio. Section 4 presents the results of the simulation of a Wannacry-type event.

2 Portfolio

2.1 Modeling the effects of a cyber attack on policyholders

Our model to describe the effect of a cyber-incident on a portfolio is decomposed in three

parts:

• an ”infection” model, describing how likely the policyholders may be stroke by the

attack;

• a ”recovery” model, to consider the time during which the policyholder requires

assistance;

• a model for the reaction and prevention, that is how long does it take to identify

the threat and how fast the policyholders react in implementing the patches.

Considering n policyholders, the way the j−th policyholder is affected by the attack

is therefore described by the following three time random variables, each corresponding

to one of the three parts of the model as listed above:

• Tj = time at which he is infected (may be infinite);
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• Uj = duration of the recovery period (for him, the crisis ends at time Tj + Uj);

• Cj = time at which he implements security changes that make him immune to the

attack.

Let us define Yj = inf(Tj, Cj) and δj = 1Tj≤Cj
. Yj is the time at which the j-th policyholder

is no longer susceptible to be affected, either because immunity has been acquired, or

because contamination has occurred. Moreover, if δj = 1, then the policyholder has been

affected by the attack. Otherwise, the reaction has been fast enough, preventing him

from damages. We assume that (Tj, Uj)1≤j≤n are i.i.d. This independence assumption

may not be entirely true, since some of the policyholders may be in contact, and thus

can be able to transmit a malware more easily to one another. However, if we assume

the portfolio to be large enough and if the subscription policy has avoided to constitute

significant clusters of connected policyholders, such phenomena should be marginal and

thus can be neglected. Typically this independence assumption reflects the fact that, if n

is much smaller that the size of the national population (or even global population), the

infection is more likely to come from outside the portfolio that from inside.

The three variables (T, U, C) can be modeled using their hazard rate. For a continuous

random variable Z, the corresponding hazard rate function, denoted λZ in the following,

is defined as

λZ(t) = lim
dt→0+

P(Z ∈ [t, t+ dt]|Z ≥ t).

Modeling λT corresponds to modeling the dynamic evolution of the cyber episode. It

reflects the severity of the crisis at a global level. On the other hand, λU and λC reflects

the reaction of the insurance to the events: how fast the company is able to assist its

customers (λU) and how fast and efficiently it can perform prevention to diminish the

intensity of the crisis.
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2.2 Measuring the impact on the portfolio

To measure the impact of a cyber event at a portfolio level, let us introduce the following

notations,

Nt =
n∑
j=1

δj1Yj≤t,

Rt =
n∑
j=1

δj1Yj+Uj≤t,

It = Nt −Rt.

Nt denotes the cumulative number of infected policyholders at time t, while Rt is the

number of infected who have recovered before time t, and It is the number for which

the crisis is still ongoing at time t. By recovery, we do not mean ”full recovery” (that is

retrieving the same level of activity and having compensated the losses): the timescale

for full recovery may be much larger than the duration of the crisis (weeks or months,

compared to days). This recovery time only refers to the immediate help that is required

by the policyholder.

Indeed, our purpose is to evaluate the risk of being unable to deliver the assistance

because too many policyholders are affected. Since assistance to victims is a key element of

many cyber-insurance contracts, if It exceeds some threshold (which is the total capacity

of response of the insurance company), important penalties can strike the company which

becomes unable to correctly execute the contract. Moreover, the more policyholders have

to be assisted at a given time t, the higher the costs of assistance may be. This is why, in

Section 3, we focus on approximations of the distribution of (It)t≥0.
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3 Approximation of the evolution of the portfolio

through Gaussian processes

Let us introduce some notations before stating our theoretical results. Let SC(t) = P(C ≥
t) denote the survival function of the variable C, FU(t) = P(U ≤ t), and

φY,U(t, h) =

∫ t

0

SC(u) {FU(t+ h)− FU(u)} fT (u)du,

ν(t) =

∫ t

0

SC(u)fT (u)du,

ρ(t) =

∫ t

0

SC(u)fV (u)du,

where V = T + U and fT (resp. fV ) is the density of T (resp. V ).

The following result shows that, if the size of the portfolio n is large enough, the

distribution of the process (It)t≥0 can be approximated by a Gaussian process.

Theorem 3.1 Let ι1(t) = ν(t)− φY,U(t, h), ι2(t) = ν(t)− ρ(t).

Then, define

Zn,t =
(It − nι2(t))

n1/2
.

The process (Zn,t)t≥0 converges in distribution towards a centered Gaussian process with

covariance function σI(t, t+ h) = ι1(t)− ι2(t)ι2(t+ h), for all t ≥ 0, h ≥ 0.

In other words, the central scenario for the evolution of (It)t≥0 is t → nι2(t), with

Gaussian errors around this trend. That is for a large portfolio, the proportion of infected

policyholders is closed to ι2(t) =
∫ t
0
SC(u)(fT (u) − fV (u))du. In this expression, the

difference of the density of the infection times and the recovery times, is weighted by the

survival function of the security implementation : the faster the vaccination, the smaller

the proportion of infected policyholders. Besides, a rough approximation for supt≥0 It is

supt≥0 nι2(t), and distribution-free deviation bounds as in Proposition 3.2 below can help

to quantify the potential error in such an approximation.

Proposition 3.2 For all x ≥ 0,

P
(
n−1/2 sup

t≥0
|It − nι2(t)| ≥ x

)
≤ 2.5 exp

(
−2x2 + Cx

)
,

for some absolute constant C.
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4 Simulation of a Wannacry-type event

The Wannacry attack hit the world in May 2017, see Mohurle and Patil (2017). It is

particularly emblematic due to the important number of computers infected around the

world (more than 300,000 according to Chen and Bridges (2017)). The attack consisted

in a ransomware introduced in the systems through a well documented vulnerability of

Microsoft Windows (EternalBlue exploit, see Kao and Hsiao (2018)). Wannacry blocked

the system, preventing the users to access data. A ransom was asked to unblock the sys-

tem, which had to be paid in bitcoins. Wannacry lead to significant business interruptions

and losses - the global amount of paid ransoms, which is approximatively 80,000 euros

according to Willman (2017), is negligible compared to the total estimated damages (the

loss is estimated as 92 billions pounds for the sole UK’s National Health Service (NHS)

according to Field (2018)).

4.1 Model for λT

To mimic the Wannacry incident and its propagation, we rely on a classical epidemiolog-

ical SIR model. This SIR model is used to determine the hazard rate λT , describing the

evolution of the strength of the contagion in the global population. These types of com-

partmental models are commonly used to describe (biological) epidemics since M’Kendrick

(1925) and Kermack and M’Kendrick (1927), see also Lefèvre and Picard (1996). These

types of models have already been applied to several actuarial applications, see e.g. Chen

and Cox (2009), Feng and Garrido (2011) or Lefèvre et al. (2017).

The SIR model (for Susceptible - Infected - Recovered) describes the evolution of

(st, it, rt)t≥0, where st is the number of exposed victims in the global population at time

t, it is the number of infected entities that are still contagious at time t, and rt is the

number of entities who are no longer contagious. The global size of the population N

does not evolve through time (which is reasonable since the crisis only lasts a few days),

that is, for all t, N = st + it + rt. The evolution of (st, it, rt) is guided by the following

system of differential equations,

dst
dt

= −βstit (4.1)

dit
dt

= βstit − γit (4.2)

drt
dt

= γit, (4.3)
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where β is the contagion rate and γ the ”recovery” rate. The function t → it reflects

the evolution of the strength of the epidemics, and we take λT (t) = βit, since βitdt =

βstitdt/st represents the proportion of newly infected people between t and t+ dt in the

global population. Determining reasonable values for the parameters (β, γ,N) is difficult

due to the lack of public data on the real-time evolution of the crisis and on the strength

of the contagion. We now describe the heuristic we develop to determine such set of

parameters.

We can impose γ = 1, since it seems reasonable to assume that, in approximatively

1 day, containment measures are developed to prevent the infection to spread. On the

other hand, the force of the contagion, described by β, and the total size of the exposed

global population N, require more delicate assumptions. To calibrate them, we used the

relationships between the parameters and r∞ = limt→∞ rt = 300, 000 (the total number

of victims), and imax = maxt≥0 it. Again, the quantity imax is unknown. Nevertheless, we

can estimate it from the peak of paid ransoms, which occurs on 15th May 2017 (93 - 29%

- ransoms out of 320 between 12th and 21th May, the payments are linked to three bitcoin

adresses for which the time of transactions is available, see Willman (2017)). Using this

information, we consider the (rough) approximation imax = 29% × r∞. This leads to the

following set of parameters described in Table 1.

Value

β 2.556 ×10−7

γ 1

N 4064279

R0 1.04

imax 87188

r∞ 300,000

Table 1: Parameters and main characteristic for a SIR model calibrated from the Wan-

nacry ransomware attack. R0, the basic reproduction number (classical indicator in epi-

demiology), is defined as R0 = Nβ/γ.

4.2 Response to the attack

In our simulations, we consider an exponential distribution of the time of intervention U,

that is λU(t) = λ0. Again, U does not represent the time before full recovery. The mean
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value of U, 1/λ0, should be taken as a few days, to be of the same magnitude as the length

of the episode (10 days in our simulations). In our simulation, we take λ0 = 1/3.

For the variable C, we distinguish three types of reaction to the crisis:

• a translated exponential distribution, λ
(1)
C (t) = c11t≥τ1 . This means that, once the

response has begun, the proportion of policyholders per time who update their

security system is constant through time;

• a Pareto-type distribution, λ
(2)
C (t) = c2(t − τ2 + 1/2)−α21t≥τ2 , for α2 > 0. This

corresponds to a situation where the vigilance of the policyholders decreases through

time: the more careful perform update short after the date of response τ2, while the

ones who did not instantly perform this update are more likely to ignore the threat;

• a Weibull-type situation where there is a progressive attention devoted to this threat

among policyholders, that is λ
(3)
C (t) = c3(t− τ3)α31t≥τ3 , for α3 > 0.

In each case, a parameter (τj)1≤j≤3 represents the reactivity of the response.

4.3 Simulation results

We consider two portfolios of respectively n = 5000 and n = 10, 000 exposed policies. For

each portfolio, we perform 10, 000 simulations of the impact of a cyber epidemics with the

same attack intensity as Wannacry. For each type of response, we consider three delays of

reaction: a fast response (3 days after the start of the event), a medium response (5 days),

and a slow response (7 days). For each replication, we focus on the maximum number of

policyholders requiring immediate assistance, that is supt It. The values of the parameters

of the three types of responses described above are taken so that E[Cj − τj|Cj ≥ τj] = 1.

Two typical simulated trajectories of (It)t≥0 are shown in Figure 1. Some empirical

statistics on supt≥0 It are shown in Tables 2 and 3 below.

Additionally, Figure 2 and Figure 3 represent the histograms for the variable supt It

in the different settings, for n = 10, 000.
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Type of reaction Mean Standard deviation 95% confidence interval

No reaction 114.7122 8.91404 (98;133)

Slow Exponential 108.8625 9.241057 (92,128)

Slow Pareto 109.8391 9.269941 (93,129)

Slow Weibull 110.0568 9.213971 (93,129)

Medium Exponential 98.1915 9.220256 (81,117)

Medium Pareto 99.9944 9.378708 (82,119)

Medium Weibull 100.5861 9.292267 (83,119)

Fast Exponential 78.3415 8.359442 (63,95)

Fast Pareto 80.9131 8.712046 (64,98)

Fast Weibull 82.4775 8.667168 (66,100)

Table 2: Summary statistics on supt≥0 It, n = 5000.

Type of reaction Mean Standard deviation 95% confidence interval

No reaction 222.469 12.78206 (198,248)

Slow Exponential 212.6108 13.34208 (187,240)

Slow Pareto 214.622 13.38092 (189,242)

Slow Weibull 214.7712 13.2952 (190,242)

Medium Exponential 192.366 13.09089 (167,219)

Medium Pareto 196.3496 13.29188 (171,223)

Medium Weibull 197.0575 13.19889 (172,224)

Fast Exponential 153.595 11.87992 (131,177)

Fast Pareto 159.5131 12.33206 (136,184)

Fast Weibull 162.0158 12.23092 (138,187)

Table 3: Summary statistics on supt≥0 It, n = 10, 000.
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Figure 1: Two simulated trajectories of t → It (left-hand side: size of the portfolio

n = 5000, right-hand side n = 10, 000.)
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Figure 2: Histogram for supt It (10, 000 simulations, size of the portfolio n = 10, 000) in

case of absence of response to the attack.

We see that all three types of responses lead to a similar impact on supt It (which is

not entirely surprising since the expectation of these three distributions has been taken

identical). Some differences in terms of variance still exist. The main parameter seems

to be the time of response. A slow response will hardly diminish the burden of the assis-

tance teams, while a fast response in 3 days significantly reduces the magnitude of supt It.
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Figure 3: Histogram for supt It (10, 000 simulations, size of the portfolio n = 10, 000) for

different type of responses and delays.
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5 Conclusion

In this paper, we propose a general model for evaluating the damages caused by a cyber-

hurricane on an insurance portfolio. We consider a particular setting in the simulation

study, trying to mimic an event similar to the famous Wannacry episode, but every part

of the model can be adapted to take various scenarii into account. This model can be

used to quantify the benefits of a reaction to such a crisis. In the numerical study, we

considered three patterns of response, where the most determinant parameter seems to be

the fastness of the reaction. Behavioral studies on how policyholders perform prevention

may be determinant to calibrate this response and evaluate the risk of collapse of the

system.
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