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Abstract: We study the relation between one-year premium risk and ultimate premium

risk. In practice, the one-year risk is sometimes related to the ultimate risk by using a so-

called emergence pattern formula which postulates a linear relation between both risks. We

define the true emergence pattern of the ultimate loss for the one-year premium risk based

on a conditional distribution of the ultimate loss derived from a multivariate distribution

of the claims development process. We investigate three models commonly used in claims

reserving and prove that the true emergence pattern formulas are different from the linear

emergence pattern formula used in practice. We show that the one-year risk, when measured

by VaR, can be under and overestimated if the linear emergence pattern formula is applied.

We present two modifications of the linear emergence pattern formula. These modifications

allow us to go beyond the claims development models investigated in the first part and work

with an arbitrary distribution of the ultimate loss.
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1 Introduction

Insurance companies are exposed to premium and reserve risk and they quantify so-called

one-year and ultimate risk. By one-year premium risk we understand the risk that the

premiums earned in a given year are not sufficient to cover the payments made in the year

and the reserve set at the end of the year for the losses incurred in this accident year (the

one-year loss). By ultimate premium risk we understand the risk that the premiums earned

in a given year are not sufficient to cover all the payments made in infinite time horizon for

the losses incurred in this accident year (the ultimate loss). One-year and ultimate reserve

risks are defined analogously, but the reserve risk is related to the adequacy of the current

volumes of the claims reserves (the reserve risk concerns payments for the losses incurred in

the past accident years). One-year risk is investigated for Solvency II risk capital, whereas

ultimate risk is investigated for pricing and business strategies. The natural question is what

is a relation between the one-year risk and the ultimate risk and how to model this relation.

We try to answer this question in this paper. We focus on the premium risk, i.e. on losses

from a new, single accident year.

We work in a discrete time setting. Let X = (X0, X1, X2, ..., Xn) denote a stochastic

process on a probability space
(
Ω,F,P) with a filtration F = (Fk)k=0,1,...,n. We set X0 = 0.

We assume that F is the natural filtration generated by X. Consequently, the process X is F-

adapted. We use X0 to introduce an explicit notation for the information at time 0, which we

later need to correctly define the true emergence pattern as a conditional distribution. The

random variables (X1, X2, ..., Xn) describe the claims development process for an accident

year: X1 denotes the claims paid in the first development year and Xn denotes the aggregate

value of all claims paid. The ultimate premium risk is modelled with Xn. The one-year

premium risk is modelled with BE1 = E[Xn|F1]. The conditional expectation E[Xn|F1] is

an F1-measurable random variable. The expected value BE1 = E[Xn|F1] = E[Xn|X1] is

called the best estimate of the ultimate loss after the first year. For simplicity, we neglect

discounting in the definition of the best estimate of the ultimate loss. We can see that

the relation between the one-year premium risk and the ultimate premium risk depends on

the relation between X1 and Xn. The relation between X1 and Xn is usually specified in a

claims reserving model which specifies the claims development process (X1, ..., Xn). In claims

reserving models, see e.g. Radtke et al. (2016), Hertig (1985), Wüthrich, Merz (2008), we

choose the distribution X1 and the conditional distributions (Xi+1|Xi, ..., X1)n−1
i=1 . We can

model the one-year risk and the ultimate risk (BE1, Xn) by generating them in a forward

way: we generate the first year loss X1, we calculate the best estimate E[Xn|X1], using

the development factors (Xi+1|Xi, ..., X1)n−1
i=1 we generate the losses in the next development

years and we get the ultimate loss Xn. Such a forward simulation scheme is investigated

e.g. in Wüthrich, Merz (2015) where the relation between the one year reserve risk and the
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ultimate reserve risk is discussed in details. The new problem which we study in this paper

is how to model the one-year premium risk and the ultimate premium risk (BE1, Xn) by

generating them in a backward way starting with the ultimate loss Xn for the new accident

year under consideration.

This paper is motivated by a real problem faced by insurance companies in Solvency II

regime. From business point of view, the unconditional distribution of Xn is well-understood

by decision makers, used in all planning reports, is the basis of pricing and long-term risk

analysis. At the same time, the premium risk module in Solvency II focuses on the risk in the

first year for the premiums earned, hence the distribution of X1 must be used. Due to the

business reasons mentioned above, insurance companies are less willing to use the distribution

of X1. They would usually prefer to perform a backward simulation of (X1, Xn), i.e simulate

the ultimate loss from a well-understood unconditional distribution of Xn and allocate the

simulated ultimate loss Xn to the first development year. This allocation should be done

based on the conditional distribution of X1|Xn = x, or based on the conditional distribution

of BE1|Xn = x since BE1 describes the one-year premium risk in Solvency II.

A practical approach to a backward simulation of the cumulative payments (X1, ..., Xn)

starting from the ultimate loss Xn is discussed in England et al. (2012) and Bird, Cairns

(2011), who introduce concepts of an emergence pattern and emergence factors in reserve

risk. These concepts can also be applied to premium risk. The authors suggest that the

ultimate loss Xn can be mapped into the best estimate of the ultimate loss BE1 by using a

linear function. To our knowledge, this allocation rule is used in practice by many insurance

companies to model one-year premium and reserve risks. We postulate a new approach

to define the emergence pattern of the ultimate loss. Since we investigate the one-year

premium risk, we only have to define the emergence pattern of Xn in the first development

year, which is different to the reserve risk where we have to define the emergence patterns of

Xn in all development years except the first one. In this paper, the emergence pattern of the

ultimate loss for the one-year premium risk is based on the conditional distribution of the

best estimate of the ultimate loss given the ultimate loss BE1|(F0, Xn) where the conditional

distribution is derived from the multivariate distribution of the claims development process

(X0, X1, ..., Xn) and the definition of the best estimate of the ultimate loss after the first year

BE1. The definitionBE1|(F0, Xn) emphasises that we should not view the emergence pattern

of the ultimate loss as BE1|Fn. In the sequel, we use BE1|Xn as a simplified notation for

BE1|(F0, Xn). The conditional distribution of BE1|Xn is interpreted as the true emergence

pattern of the ultimate loss Xn. From the conditional distribution of BE1|Xn, we next

derive the unconditional distribution of the best estimate of the ultimate loss BE1 used for

quantifying the true (unconditional) one-year premium risk.

We would like to remark that similar ideas of using conditional distributions given the
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ultimate loss can be found in Chapter 4.2 in Wüthrich, Merz (2008) where the authors

postulate a claims reserving model with a latent variable determined by the ultimate loss,

and in Wüthrich, Merz (2010) where ultimate incurred losses are used as prior for payments

in a claims reserving problem. The backward schemes relating the intermediate cumulative

loss to the ultimate loss are stated as the assumptions of the models, and they are not derived

from forward claims development dynamics as in this paper. In both papers, the goal is to

derive the a posteriori distribution of the ultimate loss in a Bayesian framework, find the

prediction of the ultimate loss and the mean square error of prediction.

We consider three common claims development models used for claims reserving (Gaus-

sian Incremental Loss Ratio, Hertig’s Lognormal and Over-Dispersed Poisson models) and we

establish the conditional distributions of BE1|Xn and the unconditional distributions of BE1

in these models. We prove that the true emergence patterns in these three models are dif-

ferent from the emergence pattern postulated by England et al. (2012), Bird, Cairns (2011).

We identify that the true one-year premium risk, when measured with Value-at-Risk, can be

under and overestimated if the emergence pattern formula from England et al. (2012), Bird,

Cairns (2011) is applied, and the true one-year premium risk, when measured with Value-

at-Risk, can be higher than the ultimate premium risk at some low confidence levels. Each

of the three investigated claims development models assumes a particular distribution of the

ultimate loss and a particular claims development process (respectively: normal, lognormal,

and Poisson). In order to investigate possible relations between the one-year premium risk

and the ultimate premium risk in models with various distributions of the ultimate loss and

various claims development processes, we keep the conditional distributions BE1|Xn from

the well-known claims development models but use an arbitrary distribution Xn. The key

conclusions from this part of the paper are that the distribution of the one-year premium risk

predicted by the emergence pattern formula by England et al. (2012), Bird, Cairns (2011)

can have incorrect tail behaviour and the true one-year premium risk, when measured with

Value-at-Risk, can be higher than the ultimate premium risk at all high confidence levels.

The last result contradicts the common belief among actuaries that the one-year risk is al-

ways lower than the ultimate risk if we go far in the right tail, see e.g. Lloyd’s (2014) or

AISAM-ACME (2007). Yet, if standard deviation is used to measure the risk, then the true

emergence pattern formulas from this paper give the same one-year premium risk as the

emergence pattern formula from England et al. (2012), Bird, Cairns (2011) and the one-year

premium risk is always lower than the ultimate premium risk in our models.

We consider light-tailed, subexponential and Pareto-type distributions. Unless otherwise

stated, we assume that the distribution F of the ultimate loss Xn is absolutely continuous,

supported on (0,∞) with infinite right-end point and has finite second moment. By a light-
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tailed loss distribution we mean a distribution F such that

lim
x→∞

etx(1− F (x)) = 0, for some t > 0. (1.1)

By a subexponential loss distribution we mean a distribution F such that for independent

copies of X ∼ F we have

Pr(X1 + ...+Xn > x) ∼ nPr(X > x) x→∞. (1.2)

It is known that limx→∞ e
tx(1 − F (x)) = ∞ for any t > 0. By a Pareto-type distribution

with a tail index θ we mean a distribution F such that

1− F (x) = L(x)x−θ, x > 0, (1.3)

where L denotes a slowly-varying function, i.e. a function which satisfies limx→∞
L(tx)
L(x)

= 1

for any t > 0. Since subexponential distributions include Pareto-type distributions, we focus

on subexponential distributions with all moments finite.

We always assume that the risk is measured with Value-at-Risk, unless otherwise stated.

We quantify the (unconditional) ultimate premium risk and the (unconditional) one-year

premium risk with V aRγ[Xn−E[Xn]] and V aRγ[BE1−E[BE1]] at some confidence level γ.

In reserve risk models, so-called one-year claims development results CDRs are investigated,

see Wüthrich, Merz (2015). The counterpart of the one-year CDR, which we want to use for

the one-year premium risk, is the technical result for the new accident year, defined as the

difference between the premiums earned in the year and the best estimate of the ultimate

loss at the end of the year for the losses incurred in this accident year. Since the premiums

include an expected profit margin, we replace the premiums with the expected loss E[Xn] in

our definition of the premium risk. From insurance point of view, we only consider confidence

levels γ > 0.5 such that V aRγ[Xn] > E[Xn] (but we may have V aRγ[BE1] < E[BE1]).

In Section 2 we describe the emergence pattern formula from England et al. (2012), Bird,

Cairns (2011). In Section 3 we investigate the true emergence patterns and the true one-year

risks in Gaussian Incremental Loss Ratio, Hertig’s Lognormal and Over-Dispersed Poisson

models. In Section 4 we study the one-year premium risk if we use an arbitrary distribution of

the ultimate loss and allocate this loss to the first year by using the conditional distributions

from Section 3. All proofs are presented in the last section.

2 The linear emergence pattern

England et al. (2012) and Bird, Cairns (2011) introduced the concept of an emergence pattern

of the ultimate loss for one-year reserve risk. They postulate a linear relation between the
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best estimate of the ultimate loss and the ultimate loss. If their approach is applied to

one-year premium risk, then we have the relation:

BEep
1 = αXn + (1− α)E[Xn], (2.1)

where α is called an emergence factor, and α ∈ (0, 1). It should be noted that BEep
1 is

a σ(Xn)-measurable random variable, in contrast to BE1 = E[Xn|X1] which is a σ(X1)-

measurable random variable. England et al. (2012), Bird, Cairns (2011) propose to use

α =
SD[BE1]

SD[Xn]
=
SD
[
BE1 − E[BE1]

]
SD
[
Xn − E[Xn]

] . (2.2)

The emergence factor α in (2.2) measures the relation between the one-year premium risk

and the ultimate premium risk for the new accident year under consideration, where the risk

is measured with standard deviation.

We would like to remark that in this paper we don’t consider estimation error and we

assume that all parameters of the claims development process are given. Consequently, the

emergence factor α can be directly derived from the multivariate distribution of (X1, ..., Xn)

assumed for the accident year. In practice, assuming a Markovian claims development process

or a claims development process with independent increments, we would have to estimate

the distribution of the loss in the first year X1 and the distributions of the development

factors (Xi+1|Xi)
n−1
i=1 , or (Xi+1 − Xi)

n−1
i=1 , in consecutive years and, next, compare the devi-

ations of BE1 and Xn calculated/simulated in the forward way. The idea of estimating α

for the one-year premium risk is the same as for the one-year reserve risk, see England et al.

(2012) and Bird, Cairns (2011). The distributions of the development factors (Xi+1|Xi)
n−1
i=1 ,

or (Xi+1 − Xi)
n−1
i=1 , are estimated from the historical losses in a run-off triangle in a claims

reserving model (e.g. Chain-Ladder, incremental loss ratio, additive model). However, in or-

der to derive (2.2) for the one-year premium risk, we also have to establish the unconditional

distribution of X1, which is usually related to the exposure (premium) in the accident year,

see incremental loss ratio and additive models in Chapter 8.3 in Wüthrich, Merz (2008). The

parameters of the claims development process estimated from historical data in a claims re-

serving model can be used in the new accident year. In particular, X1 can be simulated using

the planned volume of the premiums to be earned in the new accident year, coming from the

financial plan of the company. Due to the assumption that we know all parameters of the

claims development process, the one-year premium risk is, and can be, investigated indepen-

dently of the one-year reserve risk in the sense that the development factors observed in the

new calendar year in the loss run-off triangle don’t impact the best estimate of the ultimate

loss for the losses incurred in the new accident year, i.e. we don’t have to consider so-called

re-reserving/bootstraping techniques for E[Xn|X1]. We are aware of the simplifications, how-
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ever, the key goal of this paper is to analyse probabilistic properties of the one-year premium

risk and the ultimate premium risk implied by various claims development processes.

We have a simple algorithm (2.1) for the simulation of BE1 starting from Xn. Moreover,

the parametrisation of the formula (2.1) is very appealing. We point out that we can use any

distribution of the ultimate loss Xn parameterised in the premium risk model and we can

switch from the ultimate premium risk to the one-year premium risk using a single scaling

factor α parameterised in the claims reserving model. The distribution of Xn used in (2.1)

does not have to coincide with the distribution of the ultimate loss from the claims reserving

model where the parameter α is calibrated, see England et al. (2012) and Bird, Cairns (2011).

Let us investigate theoretical foundations of the emergence pattern formula (2.1). Since

we want to model a pair of dependent random variables (BE1, Xn), the simplest approach

would be to use a linear factor model for (BE1, Xn). It is natural to assume that E[BE1] =

E[Xn] to guarantee that the estimation of the ultimate loss is unbiased. We get the relation:

BEf
1 = ηXn + (1− η)E[Xn] + ξ, η = ρ(BE1, Xn)

SD(BE1)

SD(Xn)
, (2.3)

where E[ξ] = 0, V ar[ξ] =
(
1 − ρ2(BE1, Xn)

)
V ar[BE1] and ξ is independent of Fn. Let us

recall that BE1 = E[Xn|X1] is a σ(X1)-measurable random variable, the emergence pattern

formula BEep
1 = αXn + (1 − α)E[Xn] is a σ(Xn)-measurable random variable, and we note

that BEf
1 is a σ(Xn)∨σ(ξ)-measurable random variable, so we have to enlarge the filtration

F to define (2.3) and we set F̃k = Fk ∨σ(ξ), k = 0, 1, ..., n. We can see that the linear factor

model (2.3) leads to the emergence pattern (2.1) with α from (2.2) only if ρ(BE1, Xn) = 1.

We can immediately derive the following conclusions.

Corollary 2.1. 1. The emergence pattern formula (2.1) is built on the assumption that

the best estimate of the ultimate loss BE1 is perfectly linearly correlated with the ulti-

mate loss Xn and both are σ(X1)-measurable random variables,

2. The emergence pattern formula (2.1) cannot describe the true emergence pattern of the

ultimate loss, in the sense of the conditional distribution of BE1|Xn = x, and the true

joint distribution of the one-year risk and the ultimate risk (BE1, Xn) in non-trivial

models of claims development, including Gaussian Incremental Loss Ratio, Hertig’s

Lognormal, and Over-Dispersed Poisson models.

The emergence pattern formula (2.1) implies that the conditional distribution BEep
1 |Xn =

x is degenerate. However, the true conditional distribution BE1|Xn = x and the true

conditional emergence pattern formula for the ultimate loss cannot be degenerate in a non-

trivial claims development model, since we expect that there are many scenarios with many

different possible values of BE1 which can lead to the same value of Xn. Hence, there is a

clear need for an improvement in the emergence pattern formula.
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In many applications, including Solvency II calculation of the capital requirement, we

only need an unconditional sample of the best estimate of the ultimate loss BE1, instead

of a joint sample (BE1, Xn) or a conditional sample BE1|Xn = x. Let us use the formula

(2.1) to generate the unconditional sample of BE1. We are interested in properties of the

(unconditional) one-year risk vs. the ultimate risk.

Theorem 2.1. Let us consider the emergence pattern formula (2.1) with an emergence factor

α ∈ (0, 1).

1. E[BEep
1 ] = E[Xn] and V ar[BEep

1 ] = α2V ar[Xn] < V ar[Xn],

2. If Xn has a light-tailed distribution (subexponential with all moments finite), then BEep
1

has a light-tailed distribution (subexponential with all moments finite),

3. If Xn has a Pareto-type distribution with tail index θ, then BEep
1 has a Pareto-type

distribution with tail index θ,

4. V aRγ

[
BEep

1 − E[BEep
1 ]
]

= αV aRγ

[
Xn − E[Xn]

]
< V aRγ

[
Xn − E[Xn]

]
.

If we use (2.1), then the unconditional expected value of the best estimate of the ultimate

loss is equal to the unconditional expected value of the ultimate loss. This property is desired

since otherwise the estimation of the ultimate loss would be biased. If the emergence factor

α is set in accordance with condition (2.2), then V ar[BEep
1 ] = V ar[BE1], which is again a

desired property. Next, the one-year premium risk is a fraction of order α of the ultimate

premium risk, if the risk is measured with standard deviation and Value-at-Risk. This

property is less clear but it is in accordance with a common belief among actuaries that

the one-year risk is lower than the ultimate risk, see e.g. Lloyd’s (2014) or AISAM-ACME

(2007). Finally, the distributions of the one-year premium risk and the ultimate premium

risk have the same tail behaviour. Theorem 2.1 shows that the formula (2.1) has some

desirable properties if applied to simulate the unconditional samples of the best estimates of

the ultimate loss BE1 from the ultimate losses Xn.

3 The true emergence patterns in claims development

models

In the next subsections, we derive the conditional distributions of BE1|Xn and the uncon-

ditional distributions of BE1 in three claims development models used for claims reserving.
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3.1 Gaussian Incremental Loss Ratio model

We consider Incremental Loss Ratio model (ILR) with Gaussian incremental losses, see e.g.

Radtke et al. (2016) and Wüthrich, Merz (2008). We investigate cumulative payments given

by

Xj =

j∑
i=1

εi, where: εi ∼ N(Eµi;Eσ
2
i ) for i ∈ {1, ..., n}, (3.1)

and (εi)
n
i=1 is a sequence of independent random variables. By E we denote the exposure in

the accident year, and εi represents the incremental loss in development year i. We assume

that µi ∈ R, σi > 0, E > 0. We denote

µ =
n∑
i=1

µi, σ2 =
n∑
i=1

σ2
i .

The best estimate of the ultimate loss is determined by

BE1 = E[Xn|X1] = X1 + E(µ− µ1). (3.2)

The next theorem describes the distributions in which we are interested. The distributions

have special parameterisations which mimic the emergence pattern formula (2.1).

Theorem 3.1. Let us consider the model (3.1) of claims development and the multivariate

distribution of the claims development process (X1, ..., Xn). Let

µXn = E[Xn], σ2
Xn = V ar[Xn], α =

SD[BE1]

SD[Xn]
.

We have the following loss distributions:

Xn ∼ N
(
µXn ;σ2

Xn

)
, (3.3)

BE1|Xn = x ∼ N
(
α2x+ (1− α2)µXn ;α2(1− α2)σ2

Xn

)
, (3.4)

BE1 ∼ N
(
µXn ;α2σ2

Xn

)
, (3.5)

with the parameter α which satisfies α ∈ (0, 1).

We remark that µXn coincides with µ, but we prefer to have an explicit parameter for E[Xn].

Formula (3.4) establishes the true emergence pattern of the ultimate loss Xn in our claims

development model. Moreover, it describes a backward simulation scheme for BE1, starting

from Xn, where we can switch (in accordance with the underlying probabilistic model of

claims development) from the ultimate premium risk to the one-year premium risk. As in

(2.1), we only use the distribution of the ultimate loss Xn from the ultimate premium risk
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and a single emergence factor α which summarises the information from the reserve risk

module about the claims development process required for the one-year premium risk. We

follow the main idea behind the emergence pattern formula (2.1). However, we are able

to improve the emergence pattern formula from England et al. (2012), Bird, Cairns (2011)

so that it yields the correct conditional distribution of BE1|Xn = x and, consequently, the

correct unconditional distribution of BE1 in our claims development model, given by (3.5).

If we assume, as in Theorem 3.1, that the ultimate loss Xn ∼ N(µXn , σ
2
Xn

), then the

emergence pattern formula (2.1) yields the following unconditional distribution of the best

estimate of the ultimate loss:

BEep
1 ∼ N

(
µXn , α

2σ2
Xn

)
. (3.6)

Interestingly, the unconditional distributions of the best estimate of the ultimate loss (3.5)

and (3.6) are the same. Consequently, there exists a claims development model where the

unconditional distribution of the true one-year premium risk can be characterised with the

emergence pattern formula from England et al. (2012), Bird, Cairns (2011). However, as we

see in the next subsections, this is an exceptional case.

We conclude with properties of the unconditional distribution of BE1, which are special

cases of the properties for BEep
1 from Theorem 2.1.

Theorem 3.2. Let us consider the model and the assumptions from Theorem 3.1.

1. E[BE1] = E[Xn] and V ar[BE1] = α2V ar[Xn] < V ar[Xn],

2. V aRγ

[
BE1 − E[BE1]

]
= αV aRγ

[
Xn − E[Xn]

]
< V aRγ

[
Xn − E[Xn]

]
, where

V aRγ

[
BE1 − E[BE1]

]
= αΦ−1(γ)SD[Xn].

3.2 Hertig’s Lognormal model

We consider a multiplicative loss model where the development factors are modelled with

lognormal distributions, see e.g. Hertig (1985) or Wüthrich, Merz (2008). We investigate

cumulative payments given by

X1 = ε1, Xi = Xi−1 · εi, where: εi ∼ LogN(mi, s
2
i ) for i ∈ {1, ..., n}, (3.7)

and (εi)
n
i=1 is a sequence of independent random variables. We assume that mi ∈ R, si > 0.

We denote

m =
n∑
i=1

mi, s2 =
n∑
i=1

s2
i .
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The best estimate of the ultimate loss is determined by

BE1 = E[Xn|X1] = X1e
m−m1+ 1

2
(s2−s21). (3.8)

Using the same reasoning as in the previous section, we can derive the true emergence

pattern for the ultimate loss which comes from the claims development process (3.7).

Theorem 3.3. Let us consider the model (3.7) of claims development and the multivariate

distribution of the claims development process (X1, ..., Xn). Let

µXn = E[Xn], ψXn =
SD[Xn]

E[Xn]
, α =

SD[BE1]

SD[Xn]
.

We have the following loss distributions:

Xn ∼ LogN
(
m̃; s̃2

)
, (3.9)

BE1|Xn = x ∼ LogN

(
α̃2 log(x) +

(
1− α̃2

)(
m̃+

s̃2

2

)
; α̃2(1− α̃2)s̃2

)
, (3.10)

BE1 ∼ LogN
(
m̃+ (1− α̃2)

s̃2

2
; α̃2s̃2

)
, (3.11)

where

m̃ = log(µXn)− 1

2
log
(
1 + ψ2

Xn

)
, s̃2 = log

(
1 + ψ2

Xn

)
,

α̃2 =
log
(
1 + α2ψ2

Xn

)
log
(
1 + ψ2

Xn

) ,

with the parameter α which satisfies α ∈ (0, 1).

Theorem 3.4. Let us consider the model and the assumptions from Theorem 3.3.

1. E[BE1] = E[Xn] and V ar[BE1] = α2V ar[Xn] < V ar[Xn],

2. V aRγ

[
BE1 − E[BE1]

]
< V aRγ[Xn − E[Xn]] for γ > γ∗, V aRγ

[
BE1 − E[BE1]

]
>

V aRγ[Xn − E[Xn]] for γ < γ∗, where

V aRγ[BE1] = µXn
(
1 + α2ψ2

Xn

)−1/2
e

√
log
(

1+α2ψ2
Xn

)
Φ−1(γ)

,

γ∗ = Φ
(1

2

√
log(1 + α2ψ2

Xn
) +

1

2

√
log(1 + ψ2

Xn
)
)
,

3. We have the limit

lim
γ→1

V aRγ

[
BE1 − E[BE1]

]
V aRγ

[
Xn − E[Xn]

] = 0.
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If we make the assumptions from Theorem 3.3 and apply the emergence pattern formula

(2.1) to the claims development process (3.7), then we can deduce the distribution:

BEep
1 ∼ α · LogN(m̃, s̃2) + (1− α)µXn . (3.12)

Let us compare Theorem 3.4 with 2.1 and the emergence pattern formula (3.10) with

(2.1). Recalling the discussion from the previous sections, it is clear that the conditional

distributions of the best estimate of the ultimate loss given the ultimate loss (3.10) and (2.1)

are different. We can now observe that the unconditional distributions of the best estimate

of the ultimate loss (3.11) and (3.12) are also different if derived from the emergence pattern

formula and the conditional distribution approach.

We now focus on the premium risk in the claims development model (3.7). We can notice

that the supports of BE1 and BEep
1 generated with (3.11) and (3.12) are different. From

point 2 from Theorem 3.4 we deduce that the true one-year risk can be higher than the

ultimate risk if the confidence level γ is too low. We point out that a confidence level γ at

which we may observe that V aRγ[BE1] > V aRγ[Xn] is above the lowest confidence level we

allow for, i.e. is above γ̃ = Φ
(

1
2

√
log(1 + ψ2

Xn
)
)

at which V aRγ̃[Xn] = E[Xn]. For a skewed

distribution of Xn with high ψXn , a low confidence level γ at which we may observe that

V aRγ[BE1] > V aRγ[Xn] can be very high, if α is also high. However, at all sufficiently high

confidence levels the true one-year risk is lower then the ultimate risk. This property stands

in contrast with the property of the emergence pattern formula (2.1) where the one-year

risk is lower than the ultimate risk at all confidence levels. From point 3 from Theorem

3.4 we can conclude that the ratio between the Value-at-Risk measures for the one-year risk

BE1 and the ultimate risk Xn at a sufficiently high confidence level must be lower than α

(whereas the ratio between the V aR for BEep
1 and the V aR for Xn is α). Summing up,

we can conclude that the emergence pattern formula (2.1) underestimates the true one-year

premium risk at low confidence levels and overestimates the true one-year premium risk at

high confidence levels in the claims development model (3.7). The precise values of low/high

confidence levels depend on α and ψXn .

Example 3.1. We choose µXn = 1 since µXn is scaling parameter for Xn. We calculate the

ratios of V aRγ [BE1−E[BE1]]

V aRγ [Xn−E[Xn]]
as a function of α, for different ψXn and γ. If V aRγ [BE1−E[BE1]]

V aRγ [Xn−E[Xn]]
> 1,

then the true one-year risk is higher than the ultimate risk. Let us recall that
V aRγ [BEep1 −E[BEep1 ]]

V aRγ [Xn−E[Xn]]
=

α for any ψXn and γ. Hence, if V aRγ [BE1−E[BE1]]

V aRγ [Xn−E[Xn]]
> α, the emergence pattern formula (2.1)

underestimates the true one-year risk, and if V aRγ [BE1−E[BE1]]

V aRγ [Xn−E[Xn]]
< α, then the emergence pat-

tern formula (2.1) overestimates the true one-year risk. The results are presented in Figure

1. They confirm that the emergence pattern formula (2.1) can under and overestimate the

true one-year premium risk in the claims development model (3.7). E.g. for ψXn = 1

and α = 50%, the emergence pattern formula (2.1) overestimates the true one year risk

12
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Figure 1: The ratios V aRγ [BE1−E[BE1]]

V aRγ [Xn−E[Xn]]
in the Hertig’s Lognormal model.

at γ = 99.5% by about 25%. For ψXn = 3 and α = 50%, the emergence pattern formula

(2.1) underestimates the true one year risk at γ = 99.5% by about 9%. We can see that

the discrepancies between the linear emergence pattern formula and the true one-year risk

can be much larger in both directions for different parameters. In practice, we would rarely

expect ψXn > 3. We also observe that the true one-year premium risk can be higher than

the ultimate premium risk at low confidence levels γ. Even though point 3 from Theorem

3.4 shows that V aRγ[BE1 − E[BE1]] = o
(
V aRγ[Xn − E[Xn]]

)
for γ → 1, we end up with

V aRγ[BE1 − E[BE1]] ≈ α2V aRγ[Xn − E[Xn]] for γ in the range 99.99% − 99.999% in our

experiments. �

3.3 Over-Dispersed Poisson model

Finally, we consider Incremental Loss Ratio model with Over-Dispersed Poisson incremental

losses, see e.g. Wüthrich, Merz (2008) or Taylor (2016). We investigate cumulative payments

given by

Xj =

j∑
i=1

εi, where: εi ∼ ODP
(
µωi, ψ

)
for i ∈ {1, ..., n}, (3.13)

and (εi)
n
i=1 is a sequence of independent random variables. We assume that µ > 0, ωi >

0, ψ > 0. The parameter µ is interpreted as the expected ultimate loss, and ωi is interpreted

13



as the proportion of µ which is expected to be paid in development year i. Hence, we assume

that
∑n

i=1 ωi = 1. We assume that the dispersion ψ is independent of the development year

so that we can derive analytical results. The assumption that ε ∼ ODPoiss
(
µ, ψ

)
means

that ε/ψ ∼ Poiss
(
µ/ψ

)
. The best estimate of the ultimate loss is determined by

BE1 = E[Xn|X1] = X1 + µ(1− ω1). (3.14)

Theorem 3.5. Let us consider the model (3.13) of claims development and the multivariate

distribution of the claims development process (X1, ..., Xn). Let

µXn = E[Xn], ψXn =
V ar[Xn]

E[Xn]
, α =

SD[BE1]

SD[Xn]
.

We have the following loss distributions:

Xn ∼ ψXn · Poiss
(
µXn/ψXn

)
, (3.15)

BE1|Xn = x ∼ ψXn ·Bin
( x

ψXn
;α2
)

+ (1− α2)µXn , (3.16)

BE1 ∼ ψXn · Poiss
(
α2µXn/ψXn

)
+ (1− α2)µXn , (3.17)

with the parameter α which satisfies α ∈ (0, 1).

Theorem 3.6. Let us consider the model and the assumptions from Theorem 3.5.

1. E[BE1] = E[Xn] and V ar[BE1] = α2V ar[Xn] < V ar[Xn],

2. V aRγ

[
BE1 −E[BE1]

]
< V aRγ[Xn −E[Xn]] for γ > γ∗ where γ∗ < 1 is the last point

where the distribution functions of BE1 and Xn intersect, or V aRγ

[
BE1−E[BE1]

]
<

V aRγ[Xn−E[Xn]] for all γ if the distribution functions of BE1 and Xn don’t intersect.

The relation between V aRγ

[
BE1 − E[BE1]

]
and V aRγ[Xn − E[Xn]] can change for

γ < γ∗ since the distribution functions of BE1 and Xn can intersect more than once

(if they intersect),

3. We have the limit

lim
γ→1

V aRγ

[
BE1 − E[BE1]

]
V aRγ

[
Xn − E[Xn]

] = 1.

If we make the assumptions from Theorem 3.5 and we apply the emergence pattern

formula (2.1) to the claims development process (3.13), then we can derive the distribution:

BEep
1 ∼ αψXn · Poiss

(
µXn/ψXn

)
+ (1− α)µXn . (3.18)

By point 2 from Theorem 3.6, there exists a confidence level γ∗ < 1 such that the true one-

year risk is lower than the ultimate risk at all sufficiently high confidence levels γ > γ∗. At
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low confidence levels γ < γ∗, the true one-year risk can be lower or higher than the ultimate

risk. This property makes the interpretation of the one-year premium risk in relation to the

ultimate premium risk difficult in the claims development model (3.13) since the relation

between the true one-year premium risk and the ultimate premium risk can change multiple

times as we change the confidence level. From point 3 from Theorem 3.6 we can deduce that

the ratio between the Value-at-Risk measures for the one-year risk BE1 and the ultimate

risk Xn at a sufficiently high confidence level must be higher than α. Consequently, the

emergence pattern formula (2.1) underestimates the true one-year premium risk at all high

confidence levels. The emergence pattern formula (2.1) can also underestimate the true one-

year premium risk at some low confidence levels e.g. when the true one-year risk is above

the ultimate risk.

Example 3.2. We choose ψXn = 1 and we consider Poisson distributions of Xn with

different µXn . The Over-Dispersed Poisson model approaches the Gaussian Incremental

Loss Ratio model for µXn → ∞, hence we are interested in low µXn . Our key results are

presented in Figure 2. We remark that some ratios are negative since V aRγ[BE1] < E[BE1]

(but V aRγ[Xn] > E[Xn] by our assumption). We can confirm that the emergence pattern

formula (2.1) can under and overestimate the true one-year premium risk in the claims

development model (3.13). E.g. for µXn = 1.5 and α = 85%, the emergence pattern formula

(2.1) underestimates the true one-year risk at γ = 99.5% by 24% and the true one-year risk

is above the ultimate risk by 12%. For µXn = 25 and α = 15%, the emergence pattern

formula (2.1) underestimates the true one-year risk at γ = 99.5% by 14%. For µXn = 1.5

and α = 85%, the true one-year risk is higher than the ultimate risk at γ = 75% and 99.5%,

but the true one-year risk is lower than the ultimate risk for γ = 90% and 99.99% - in this

example the distribution functions of BE1 and Xn intersect 9 times in the range from the

median up to the quantile of order γ∗ = 99.555%. Moreover, the emergence pattern formula

(2.1) overestimates the true one-year risk at γ = 90% by 39%. Finally, even though point

3 from Theorem 3.6 shows that V aRγ[BE1 − E[BE1]] ∼ V aRγ[Xn − E[Xn]] for γ → 1, the

convergence for γ in the range 99.99% − 99.999% is slow in our experiments, yet it can be

observed. �

4 One-year premium risk with an arbitrary ultimate

loss distribution

The models which we investigated in the previous section assume a particular form of the

claims development process and lead to a particular distribution of the ultimate loss. What is

important for practical applications in Solvency II in premium risk module is the possibility of
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Figure 2: The ratios V aRγ [BE1−E[BE1]]

V aRγ [Xn−E[Xn]]
in the Poisson model.

using any distribution of the ultimate loss. Yet, it may be difficult to specify a priori the joint

multivariate distribution for cumulative payments (X1, ..., Xn) which lead to a pre-specified

distribution of the ultimate loss Xn. What we suggest is to use an arbitrary unconditional

distribution of the ultimate loss Xn and a conditional distribution of BE1|Xn, extracted

from the well-known claims development model, as a mechanism for allocating the ultimate

loss Xn to the best estimate BE1. We focus on the conditional distributions BE1|Xn from

the Gaussian Incremental Loss Ratio model and the Hertig’s Lognormal model.

We use the following construction. Let us consider a vector of dependent random variables

(BE1, Xn) ∼ f with a joint density function of f . The joint density f implies the marginal

and conditional densities:

Xn ∼ fXn , Xn|BE1 = x ∼ fXn|BE1=x, BE1|Xn = x ∼ fBE1|Xn=x.

We define a new joint density of (BE1, Xn) ∼ fnew by choosing BE1|Xn = x ∼ fBE1|Xn=x

and Xn ∼ fnewXn
where fnewXn

is a density absolutely continuous with respect to fXn . We have

the new marginal and conditional densities:

fnewBE1
(z) =

∫
fBE1|Xn=x(z)fnewXn (x)dx, (4.1)

fnewXn|BE1=x(z) = C · fXn|BE1=x(z)
fnewXn

(z)

fXn(z)
, (4.2)
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where C denotes a normalising constant which depends on x but is independent of z.

We can construct new models of claims development by using the distribution of the ulti-

mate loss Xn and the emergence pattern of Xn characterized with the conditional distribution

of BE1|Xn. We recall that the emergence factor α needed for BE1|Xn is discussed in Section

2. Our approach has two advantages. Firstly, we have a flexible and interpretable probabilis-

tic model where we can freely choose the distribution of the ultimate loss and switch from

the ultimate premium risk to the one-year premium risk (the backward simulation scheme).

This is a desired feature in Solvency II modelling. Secondly, we can investigate properties

of the one-year premium risk vs. the ultimate premium risk in various claims development

models, beyond the models we know from the claims reserving literature. This is the topic

of the next two subsections.

4.1 The conditional distribution from Gaussian ILR model

From (3.4) we can deduce that the unconditional distribution of BE1 is a mixture of normal

distributions. We introduce the representation:

BEnormal ep
1 = α2Xn + (1− α2)µXn +

√
α2(1− α2)σXnξ, (4.3)

where ξ ∼ N(0, 1), and ξ is independent of Fn. The formula (4.3) is our new emergence

pattern formula which allocates the ultimate loss with an arbitrary distribution to the best

estimate of the ultimate loss. We call (4.3) the additive normal emergence pattern formula.

As discussed when establishing the formula (2.3), the emergence pattern formula (4.3) is a

σ(Xn)∨σ(ξ)-measurable random variable. In the sequel, BEnormal ep
1 is denoted byBE1, since

we only study the unconditional distribution of BEnormal ep
1 . The additive normal emergence

pattern can be seen as a version of the classical emergence pattern formula (2.1) where we

simply add a Gaussian noise in order to have a non-degenerate distribution of BE1|Xn = x.

If we choose a normal distribution for Xn in (4.3), then we are in the framework of the

Gaussian ILR model and the results from Section 3.1 apply.

Theorem 4.1. Let us assume that the ultimate loss is modelled with Xn ∼ FXn. Let µXn =

E[Xn], σ2
Xn

= V ar[Xn] and choose an emergence factor α ∈ (0, 1). The emergence pattern of

the ultimate loss Xn is described with the formula (4.3). We have the following properties:

1. E[BE1] = E[Xn] and V ar[BE1] = α2V ar[Xn] < V ar[Xn],

2. If Xn has a light-tailed distribution (subexponential with all moments finite), then BE1

has a light-tailed distribution (subexponential with all moments finite). Moreover, if

Xn has a light-tailed distribution such that limx→∞(1− FXn(x))evx
2

= 0 for all v > 0,

then V aRγ

[
BE1 − E[BE1]

]
> V aRγ

[
Xn − E[Xn]

]
for γ > γ∗, with some γ∗ < 1,
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3. If Xn has a Pareto-type distribution with tail index θ, then BE1 has a Pareto-type

distribution with tail index θ, and we have the limit

lim
γ→1

V aRγ

[
BE1 − E[BE1]

]
V aRγ

[
Xn − E[Xn]

] = α2.

From point 2 we deduce a new and interesting property that the true one-year premium

risk can be higher than the ultimate premium risk at all high confidence levels. Points 2

and 3 indicate that the distributions of the true one-year premium risk and the ultimate

premium risk have the same tail behaviour. This property holds in Gaussian Incremental

Loss Ratio, Hertig’s Lognormal and Over-Dispersed Poisson models where the distribution

of Xn is uniquely specified by the underlying claims development model, as well as if we

model the one-year risk with the emergence pattern formula (2.1). Finally, point 3 gives a

new possible value of limγ→1
V aRγ

[
BE1−E[BE1]

]
V aRγ

[
Xn−E[Xn]

] .

Example 4.1. First, we assume that Xn ∼ Exp(λ) with 1−FXn(x) = e−λx. In this case, the

claims development process for the pair (BE1, Xn) with the ultimate loss Xn ∼ Exp(λ) and

the emergence pattern of the ultimate loss given by the conditional distribution (3.4) can be

fully characterised. From (4.1)-(4.2), using classical calculus, we can derive the distributions:

Pr(BE1 ≤ x) = Φ
(λx− (1− α2)√

α2(1− α2)

)
− exp

(3(1− α2)− 2λx

2α2

)
Φ
(λx− 2(1− α2)√

α2(1− α2)

)
,

Xn|BE1 = x ∼ N0

(λx− 2(1− α2)

α2λ
,
1− α2

α2λ2

)
,

where N0 denotes normal distribution left truncated at 0 and Φ denotes the standard normal

distribution function. To have more flexibility in our numerical study, we consider Xn ∼
Weibull(λ, τ) with 1−FXn(x) = e−λx

τ
. We choose λ = 1 since λ is scaling parameter for the

distribution of Xn. If τ = 1, then Xn ∼ Exp(1). If τ > 2, then limx→∞(1− FXn(x))evx
2

= 0

for any v > 0. In order to calculate V aRγ[BE1], we use Monte Carlo simulations and we

generate a sample of size 106. The results are presented in Figure 3. For τ < 2, the one-year

risk is lower than the ultimate risk at sufficiently high confidence levels but the one-year risk

can be higher than the ultimate risk at low confidence levels. For τ > 2, we observe the

new property: the one-year risk can be higher than the ultimate risk at all high confidence

levels. E.g. for α = 85% and τ = 20, we can observe that the one-year risk is higher than

the ultimate risk at γ = 99.5% and 99.99%, and at all higher confidence levels. The higher

α and τ , the lower the minimal confidence level γ∗ from which the one-year risk dominates

the ultimate risk. If τ > 3.6, then the Weibull distribution is negatively skewed. Negatively

skewed distributions can appear in situations where data are clustered near an upper limit,

and the most well-known case where we use a negatively skewed Weibull distribution is
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modelling of the future lifetime in developed countries where people tend to survive to older

ages. �
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Figure 3: The ratios V aRγ [BE1−E[BE1]]

V aRγ [Xn−E[Xn]]
in the model where Xn ∼ Weibull(τ) and BE1|Xn

comes from the Gaussian ILR model.

4.2 The conditional distribution from Hertig’s Lognormal model

From (3.10) we can deduce that the unconditional distribution of BE1 is a mixture of log-

normal distributions. We introduce the representation:

BElognormal ep
1 = (Xn)α̃

2

e(1−α̃2)
(
m̃+ s̃2

2

)
+
√
α̃2(1−α̃2)s̃ξ, (4.4)

where ξ ∼ N(0, 1), and ξ is independent of Fn. The formula (4.4) is our new emergence

pattern formula which allocates the ultimate loss with an arbitrary distribution to the best

estimate of the ultimate loss. We call (4.4) the multiplicative lognormal emergence pattern

formula. As in the previous section, the emergence pattern formula (4.4) is a σ(Xn) ∨ σ(ξ)-

measurable random variable. In the sequel, BElognormal ep
1 is denoted by BE1, since we

only study the unconditional distribution of BElognormal ep
1 . The multiplicative lognormal

emergence pattern can be seen as a version of the classical emergence pattern formula (2.1)

where we allocate Xn to BE1 with a random scaling factor in order to have a non-degenerate

distribution of BE1|Xn = x. If we choose a lognormal distribution for Xn in (4.4), then we

are in the framework of the Hertig’s model and the results from Section 3.2 apply.
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Theorem 4.2. Let us assume that the ultimate loss is modelled with Xn ∼ FXn. Let µXn =

E[Xn], ψXn = SD[Xn]
E[Xn]

and choose an emergence factor α ∈ (0, 1). We assume that there

exists a unique solution α̃ ∈ (0, 1) to the equation

E[X2α̃2

n ]

(E[X α̃2

n ])2

(
1 + ψ2

Xn

)α̃2(1−α̃2)

= 1 + α2ψ2
Xn . (4.5)

We set

m̃ =
log(µXn)− log

(
E[X α̃2

n ]
)
− (1− α̃4) s̃

2

2

1− α̃2
,

s̃2 = log
(
1 + ψ2

Xn

)
.

The emergence pattern of the ultimate loss Xn is described with the formula (4.4). We have

the following properties:

1. E[BE1] = E[Xn] and V ar[BE1] = α2V ar[Xn] < V ar[Xn],

2. If Xn has a light-tailed distribution, then BE1 has a subexponential distribution with

all moments finite. Moreover, V aRγ[BE1 − E[BE1]] > V aRγ[Xn − E[Xn]] for γ > γ∗,

with some γ∗ < 1,

3. If Xn has a subexponential distribution with all moments finite such that lim supx→∞
1−FXn (vx)

1−FXn (x)
<

1 for some v > 1 and X α̃2

n is light-tailed or subexponential, then BE1 has a subexpo-

nential distribution with all moments finite,

4. If Xn has a Pareto-type distribution with tail index θ and regularly varying function L

such that L(x
1
α̃2 ) ∼ C · L(x), x → ∞, then BE1 has a Pareto-type distribution with

tail index θ/α̃2 > θ, and

lim
γ→1

V aRγ

[
BE1 − E[BE1]

]
V aRγ

[
Xn − E[Xn]

] = 0.

Remark 4.1. Point 3 is satisfied e.g. for lognormal, Weibull, Benktander type I and type II

distributions, see e.g. the remark before Theorem 2.1 in Tang (2006). Point 4 is satisfied e.g.

if L(x) ∼ a(log(x))b, x→∞, which is the case for Pareto, Burr and loggamma distributions.

Lemma 4.1. Let us consider the equation (4.5) with α ∈ (0, 1).

1. There exists at least one solution α̃ ∈ (0, 1) to (4.5),

2. There exists a unique solution α̃ ∈ (0, 1) to (4.5) for Gamma, Weibull, Pareto (for

shape parameter greater than 2.15) and loggamma (for shape parameter greater than

2.15) distributions of Xn.
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Remark 4.2. For Pareto and loggamma distributions with shape parameters close to 2, the

equation (4.5) may have several solutions. Low values of shape parameter are unlikely to be

used in practice in our model since the emergence factor α is based on variance and variance

of Pareto or loggamma explodes when the shape parameter approaches 2.

We have found another interesting property of the one-year premium risk vs. the ultimate

premium risk: the distribution of the true one-year premium risk can have a different tail

behaviour than the distribution of the ultimate premium risk. If the tail of the one-year risk

is heavier than the tail of the ultimate risk, as in point 2 from Theorem 4.2, then we expect

that the one-year risk is higher than the ultimate risk at all high confidence levels, and we

have already observed such a property in the previous section. If the tail of the one-year risk

is lighter than the tail of the ultimate risk, as in point 4 from Theorem 4.2, then we expect

that the one-year risk is lower than the ultimate risk at all high confidence levels.

Example 4.3. We consider Xn ∼ Weibull(τ). We want to illustrate point 2 from Theorem

4.2, hence we are interested in τ ≥ 1. In order to calculate V aRγ[BE1], we use Monte Carlo

simulations and we generate a sample of size 106. The results are presented in Figure 4. For

τ = 10 and α = 85%, the one-year risk is higher than the ultimate risk at γ = 99.5% by

about 0.5%, and at γ = 99.99% by about 10%. If the emergence pattern formula (2.1) is

applied in this claims development model to measure the one-year premium risk, then the

true one-year risk is underestimated, respectively, by about 15% and 23% at γ = 99.5% and

99.99%. For α = 85%, the one-year risk is higher than the ultimate risk at the confidence level

γ = 99.5%, and also at all confidence levels γ > 99.5%, if we consider Weibull distributions

with τ > 7.5. As discussed in Example 4.2, negatively skewed Weibull distributions are not

common in applications but they should not be excluded a priori from considerations.

We illustrate consequences of point 4 from Theorem 4.2. We consider Xn ∼ Pareto(1, θ)

with 1 − FXn(x) = x−θ, x > 1. Then, log(Xn) has exponential distribution with parameter

θ and we can use the results from Example 4.1 to calculate V aRγ[BE1]. The results are

presented in Figure 5. For θ = 5 and α = 50%, the one-year risk is lower than the ultimate

risk at γ = 99.5% by about 68% and at γ = 99.99% by about 81%. If the emergence pattern

formula (2.1) is applied in this claims development model to measure the one-year premium

risk, then the true one-year risk is overestimated, respectively, by about 58% and 165% at

γ = 99.5% and 99.99%. We can also observe that the one-year risk can be higher than

the ultimate risk at low confidence levels. Finally, even though point 4 from Theorem 4.2

shows that V aRγ[BE1 − E[BE1]] = o
(
V aRγ[BE1 − E[BE1]]

)
for γ → 1, we end up with

V aRγ[BE1−E[BE1]] ≈ α3V aRγ[BE1−E[BE1]] for γ in the range 99.99%− 99.999% in our

experiments. �

Theorems 4.1 and 4.2 show that the common belief among actuaries that the one-year

risk is always lower than the ultimate risk does not always hold to be true. We point out that
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Figure 4: The ratios V aRγ [BE1−E[BE1]]

V aRγ [Xn−E[Xn]]
in the model where Xn ∼ Weibull(τ) and BE1|Xn

comes from the Hertig’s Lognormal model.

γ = 75%

0% 25% 50% 75% 100%

0%
100%
200%
300%
400%

α

ra
tio

γ = 90%

0% 25% 50% 75% 100%

0%

40%

80%

120%

α

ra
tio

γ = 99.5%

0% 25% 50% 75% 100%

0%
25%
50%
75%

100%

α

ra
tio

γ = 99.99%

0% 25% 50% 75% 100%

0%
25%
50%
75%

100%

α

ra
tio

θ  2.5 3 5 10

Figure 5: The ratios V aRγ [BE1−E[BE1]]

V aRγ [Xn−E[Xn]]
in the model where Xn ∼ Pareto(θ) and BE1|Xn

comes from the Hertig’s Lognormal model.
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the relation between the one-year risk and the ultimate risk also depends on the risk measure,

not only on the claims development process. If standard deviation is used to measure the

risk, then point 1 in Theorems 3.2, 3.4, 3.6, 4.1, 4.2 shows that the true one-year premium

risk is always lower than the ultimate premium risk in all our claims development models (in

Theorems 3.2, 3.4, 3.6, we prove that α ∈ (0, 1) and, consequently, we assume that α ∈ (0, 1)

in Theorems 4.1, 4.2). This conclusion agrees with the results from Wüthrich, Merz (2015)

where the authors use mean square error of prediction to compare the true one-year reserve

risk with the ultimate reserve risk. However, in this paper, we focus on Value-at-Risk. If

Value-at-Risk is used to measure the risk, then the relation between the one-year risk and

the ultimate risk depends on the confidence level and the claims development process. In

many claims development models, including the models presented in Section 3 which are

commonly used in claims reserving, if a sufficiently high confidence level for Value-at-Risk

is chosen, then the true one-year premium risk is lower than the ultimate premium risk,

which agrees with the common belief. However, there are claims development models, and

examples of such model are discussed in Sections 4.1-4.2, where the true one-year premium

risk can be higher than the ultimate premium risk at all high confidence levels. Actuaries

should be aware of this property in order not to misunderstand and underestimate the one-

year risk. On the other side, the true one-year premium risk can be much less dangerous than

it is believed by users of the linear emergence pattern formula (2.1). Point 4 from Theorem

4.2 proves that, in a claims development model with the emergence pattern of the ultimate

loss given by (4.4), the tail index of the Pareto-type distribution of the true one-year risk is

higher than the tail index of the Pareto-type distribution of the ultimate risk, whereas from

Theorem 2.1 we know that the tail index of the Pareto-type distribution of the one-year risk

predicted with (2.1) remains equal to the tail index of the distribution of the ultimate loss.

5 Proofs

By f(x) ∼ Cg(x) we mean the limit limx→∞
f(x)
g(x)

= C, by f(x) = o(g(x)) we mean the limit

limx→∞
f(x)
g(x)

= 0, unless different limits are specified.

First, we collect some results which we use in the proofs below.

Lemma 5.1. We consider two independent r.v. Z1 and Z2. Let S denote the class of

subexponential distributions, and P(θ) denotes the class of Pareto-type distributions with tail

index θ.

1. If Z1 and Z2 are light-tailed, then aZ1 + bZ2 is light-tailed, for any a, b ∈ R,

2. If Z1 ∈ S and 1 − FZ2(x) = o
(
1 − FZ1(x)

)
, then Z1 + Z2 ∈ S and 1 − FZ1+Z2(x) ∼

1− FZ1(x) [Lemma 9 in Geluk, De Vries (2006)],

23



3. If Z1 ∈ S and Z2 is a positive, bounded r.v., then Z1 · Z2 ∈ S [Corollary 2.5 in Cline,

Samorodnitsky (1994)]. If Z1 ∈ S such that lim supx→∞
1−FZ1

(vx)

1−FZ1
(x)

< 1 for some v > 1

and Z2 is a positive r.v. such that 1 − FZ2(vx) = o
(
1 − FZ1(x)

)
for some v > 0, or

1 − FZ2(vx) = o
(
1 − FZ2(x)

)
for some v > 1, then Z1 · Z2 ∈ S [Theorem 2.1 and

Corollary 2.1.2 in Tang (2006)],

4. If Z1 ∈ P(θ) is a positive r.v. and Z2 is a positive r.v. with a light-tailed distribution,

then Z1 · Z2 ∈ P(θ) and 1 − FZ1·Z2(x) ∼ E[Zθ
2 ]
(
1 − FZ1(x)

)
[Proposition 1.3.9.b in

Mikosch (1999)],

5. If Z1, Z2 have all moments finite, then Z1 + Z2 and Z1 · Z2 have all moments finite.

The proof of Theorem 2.1. Points 1 and 4 are obvious. Points 2 and 3 follow from

Lemma 5.1 if we choose a degenerate distribution for Z2. �

The proofs of Theorems 3.1, 3.3, 3.5. We use the probabilistic assumptions behind

the claims development processes, derive the distributions and use appropriate parameteri-

sations.

Gaussian ILR. By Result 4.6 in Johnson-Wichern (2007), if (Z1, Z2) has a bivariate normal

distribution with Z1 ∼ N(µZ1 , σ
2
Z1

), Z2 ∼ N(µZ2 , σ
2
Z2

) and zero correlation, then

Z1|Z1 + Z2 = z ∼ N

(
µZ1

σ2
Z2

σ2
Z1

+ σ2
Z2

+
σ2
Z1

σ2
Z1

+ σ2
Z2

(z − µZ2);
σ2
Z1
σ2
Z2

σ2
Z1

+ σ2
Z2

)
. (5.1)

We set Z1 = X1 = ε1 ∼ N(µ1, Eσ
2
1), Z2 = Xn −X1 =

∑n
i=2 εi ∼ N(µ− µ1, E(σ2 − σ2

1)), Z =

Z1 + Z2 = Xn ∼ N(Eµ,Eσ2). The pair (Z1, Z2) has a bivariate normal distribution with

zero correlation. We apply (5.1) and get the conditional distribution:

X1|Xn = x ∼ N

(
Eµ1 +

σ2
1

σ2
(x− Eµ);E

σ2
1(σ2 − σ2

1)

σ2

)
. (5.2)

Since BE1 = X1 + E(µ− µ1), we derive our key conditional distribution:

BE1|Xn = x ∼ N

(
σ2

1

σ2
x+

(
1− σ2

1

σ2

)
Eµ;E

σ2
1(σ2 − σ2

1)

σ2

)
(5.3)

We note that Xn ∼ N(Eµ,Eσ2) and BE1 ∼ N(Eµ,Eσ2
1). We set

µXn = E[Xn] = Eµ, σ2
Xn = V ar[Xn] = Eσ2, α2 =

V ar[BE1]

V ar[Xn]
=
σ2

1

σ2
, (5.4)

and we can now prove the formulas for the distributions of Xn, BE1 and BE1|Xn by using

the new parameters from (5.4). Since 0 < σ2
1 < σ2, we conclude that α ∈ (0, 1).

Hertig’s model. The development process (3.7) satisfies the following dynamics

log(Xi) = log(Xi−1) + log(εi) = log(Xi−1) + ηi, where: ηi ∼ N(mi, s
2
i ), i = 2, ..., n,
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which fits the Gaussian ILR model. By (5.2), we state the conditional distribution:

log(X1)| log(Xn) = x ∼ N

(
m1 +

s2
1

s2
(x−m);

s2
1(s2 − s2

1)

s2

)
,

and, using the definition of BE1, see (3.8), we can derive our key conditional distribution:

BE1|Xn = x ∼ LogN

(
s2

1

s2
log(x) +

(
1− s2

1

s2

)(
m+

s2

2

)
;
s2

1(s2 − s2
1)

s2

)
. (5.5)

We deduce that Xn ∼ LogN(m, s2) and BE1 ∼ LogN(m+ 1
2
(s2 − s2

1), s2
1). We can set

µXn = E[Xn] = em+ 1
2
s2 , ψ2

Xn =
V ar[Xn](
E[Xn]

)2 = es
2 − 1, α2 =

V ar[BE1]

V ar[Xn]
=
es

2
1 − 1

es2 − 1
, (5.6)

and we solve (5.6) to represent the parameters:

s2 = log(1 + ψ2
Xn), s2

1 = log(1 + α2ψ2
Xn), m = log(µXn)− 1

2
log(1 + ψ2

Xn). (5.7)

Finally, we introduce three new parameters: s̃ = s, m̃ = m and α̃2 =
s21
s2

. We can now deduce

the formulas for the distributions of Xn, BE1 and BE1|Xn. Since 0 < s2
1 < s2, we conclude

that α ∈ (0, 1).

Over-Dispersed Poisson: It is a known result that if Z1 ∼ Poiss(µZ1), Z2 ∼ Poiss(µZ2) and

Z1 is independent of Z2, then

Z1|Z1 + Z2 = z ∼ Bin

(
z,

µZ1

µZ1 + µZ2

)
, (5.8)

Using the definitions of the Over-Dispersed Poisson distribution and the best estimate of the

ultimate loss in this model, we can deduce the conditional distributions:

X1|Xn = x ∼ ψ ·Bin
(
x

ψ
;ω1

)
, BE1|Xn = x ∼ ψ ·Bin

(
x

ψ
;ω1

)
+ µ(1− ω1). (5.9)

Moreover, Xn ∼ ψPoiss(µ/ψ) and BE1 ∼ ψPoiss(µω1/ψ) + µ(1− ω1). We set

µXn = E[Xn] = µ, ψXn =
V ar[Xn]

E[Xn]
= ψ, α2 =

V ar[BE1]

V ar[Xn]
= ω1. (5.10)

The formulas for the distributions Xn, BE1 and BE1|Xn can now be established by using

the new parameters from (5.10). Since 0 < ω1 < 1, α ∈ (0, 1). �

The proofs of Theorems 3.2, 3.4, 3.6. Point 1. The results can be deduced from the

distributions derived in Theorems 3.1, 3.3, 3.5 and the property that α ∈ (0, 1).

Point 2 from Theorem 3.2. We use the well-known formula for the quantile of normal distri-

bution together with α ∈ (0, 1) and V aRγ[Xn] > E[Xn].
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Points 2-3 from Theorem 3.4. We use the distribution (3.11) and the formulas

V aRγ[Xn] = em̃+s̃Φ−1(γ), V aRγ[BE1] = em̃+(1−α̃2) s̃
2

2
+α̃s̃Φ−1(γ), (5.11)

which describe the quantiles of the lognormal distributions of BE1 and Xn. We can now

solve the inequality V aRγ[BE1] < V aRγ[Xn], which is equivalent to V aRγ[BE1−E[BE1]] <

V aRγ[Xn−E[Xn]], and find γ∗. The limit limγ→1
V aRγ [BE1−E[BE1]]

V aRγ [Xn−E[Xn]]
can be directly calculated

using the formula (5.11).

Point 2 from Theorem 3.6. Let Y ∼ Poiss(α2µ) and X ∼ Poiss(µ). It is known that

FX(x) ≤ FY (x) for all x, see e.g. the remark at the end of section 1.2 in Klenke and Mattner

(2010). Let us choose arbitrary k > 0. Our first goal is to show that FX(x+ k) < FY (x) for

all sufficiently high x. We only consider x > µ. By Theorem 2 from Short (2013), we have

the bounds:

Φ
(√

2H(µ, x)
)
< FX(x) < Φ

(√
2H(µ, x+ 1)

)
,

where H(µ, x) = µ − x + x log
(
x
µ

)
. Consequently, our assertion holds if H(α2µ, x) >

H(µ, x+ k + 1) for all sufficiently high x. Using the definition of H, we have to investigate

the inequality:

x log
( x

x+ k + 1

)
+ k + 1

−(k + 1) log(x+ k + 1)− x log
(
α2
)
> µ(1− α2)− (k + 1) log µ. (5.12)

We can prove that limx→+∞

(
x log

(
x

x+k+1

)
+ k + 1

)
= 0. Moreover, limx→+∞

(
− (k +

1) log(x + k + 1) − x log
(
α2
))

= +∞, since α ∈ (0, 1). Hence, the inequality (5.12) is

satisfied for all sufficiently high x.

Let us consider our claims development model. For simplicity we assume that ψXn = 1. Let

Y = BE1 − (1− α2)µ. By the arguments from above, we know that FY (x) > FXn
(
x+ (1−

α2)µ
)

for all sufficiently high x. Since the distribution FBE1 is the distribution FY shifted

to the right by (1− α2)µ, we deduce that FBE1(x) > FXn(x) for all sufficiently high x. The

result is proved, and can be extended to arbitrary ψXn .

Point 3 from Theorem 3.6. By Lemma 9.1 from Steutel and Van Harn (2004), if X ∼
Poiss(µ), then − log(1− FX(x)) ∼ x log(x). Consequently, we can derive the limit:

lim
t→∞

log(1− FBE1(tx))

log(1− FXn(t))
= x, x > 0. (5.13)

We use the arguments from Propositions 2.2 and 2.6.vi from Resnick (2007). Since the limit

(5.13) holds for a sequence of functions, the sequence of inverse functions also converges. We

can establish the limit:

lim
t→∞

F−1
BE1

(
1− (1− FXn(t))y

)
t

= y, y > 0. (5.14)
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By the property that FXn(F−1
Xn

(t)) ∼ t, t→ 1, we end up with

lim
t→∞

F−1
BE1

(1− 1/ty)

F−1
Xn

(1− 1/t)
= y, y > 0. (5.15)

Finally, we choose y = 1 in (5.15). We conclude that V aRγ[BE1 − E[BE1]] ∼ V aRγ[Xn −
E[Xn]] for γ → 1. �

The proof Theorem 4.1. Point 1 is obvious.

Point 2. The first statement follows from Lemma 5.1. The result for light-tailed distributions

is obvious. We consider a subexponential distribution with all moments finite. We know that

Z1 = α2Xn + (1 − α2)µXn is subexponential with all moments finite. The random variable

Z2 =
√
α2(1− α2)σXnξ has normal distribution and is light-tailed. We observe that

lim
x→∞

1− FZ2(x)

1− FZ1(x)
= lim

x→∞

etx(1− FZ2(x))

etx(1− FZ1(x))
= 0, for some t > 0, (5.16)

since the numerator converges to zero (Z2 is light-tailed) and the denominator converges

to infinity (Z1 is subexponential). We deduce that BE1 = Z1 + Z2 has a subexponential

distribution with all moments finite.

We prove the second statement. We can derive the lower bound for the convolution:

1− FBE1(x) = Pr
(
α2Xn + (1− α2)µXn + Z2 > x

)
≥ Pr

(
(1− α2)µXn + Z2 > x, α2Xn ≤ x

)
= Pr

(
(1− α2)µXn + Z2 > x

)
FXn

( x
α2

)
, x > 0.

Using a bound for the tail of normal distribution, see Gordon (1941), the assumption that

limx→∞(1− FXn(x))evx
2

= 0 and limx→∞
ewx

x
= +∞ for all w > 0, v > 0, we can show that

lim
x→∞

1− FBE1(x)

1− FXn(x)
≥ lim

x→∞

Pr
(
(1− α2)µXn + Z2 > x

)
FXn( x

α2 )

1− FXn(x)

≥ 1√
2π

lim
x→∞

e−
(u(x))2

2 FXn( x
α2 )

(u(x) + 1
u(x)

)(1− FXn(x))

≥ K lim
x→∞

ewx

evx2(u(x) + 1
u(x)

)(1− FXn(x))
= +∞,

where u(x) =
x−(1−α2)µXn√
α2(1−α2)σ2

Xn

and K, v, w denote some positive constants. We can deduce that

1 − FBE1(x) > 1 − FXn(x) for all sufficiently high x, and V aRγ[BE1] > V aRγ[Xn] for all

sufficiently high γ.

Point 3. Z1 and Z2 are still defined as in point 1. By Lemma 5.1 and similar arguments as

in (5.16), 1 − FBE1(x) ∼ 1 − FZ1(x) ∼ α2θ
(
1 − FXn(x)

)
, and 1 − FZ2(x) = o

(
1 − FZ1(x)

)
.

We can deduce that BE1 inherits the tail from Xn. Using Lemma 5.1 again, we prove that
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1−FBE1−µ(x) ∼ α2θ(1−FXn−µ(x)). The result for VaR follows from the arguments used in

Proposition 2.6.vi from Resnick (2007). �

The proof Theorem 4.2. Points 1. Using independence between Xn and ξ ∼ N(0, 1), as

well as moments for log-normal distribution, we can calculate the moments:

E
[
BEk

1

]
= E

[
(Xn)kα̃

2
]
ek(1−α̃2)

(
m̃+ s̃2

2

)
+ 1

2
k2α̃2(1−α̃2)s̃2 , k = 1, 2. (5.17)

We require that E[BE1] = E[Xn] and V ar[BE1] = α2V ar[Xn]. If we use (5.17), then we

derive the equation:

E
[
(Xn)2α̃2](

E
[
(Xn)α̃2

])2 e
α̃2(1−α̃2)s̃2 = 1 + α2ψ2

Xn . (5.18)

We can see that we can choose any s̃2 > 0 and look for α̃ which satisfies (5.18). The

most obvious choice is s̃2 from Theorem 3.3 so that our new emergence pattern formula

coincides with the true emergence pattern formula in the Hertig’s model if Xn has lognormal

distribution. The parameter m̃ is next derived from E[BE1] = E[Xn].

Point 2. Since Xn has a moment generating function and α̃ ∈ (0, 1), then Z1 = X α̃2

n

has a moment generating function and is light-tailed. The lognormal distribution Z2 =

e(1−α̃2)
(
m̃+ s̃2

2

)
+
√
α̃2(1−α̃2)s̃ξ is subexponential and satisfies lim supx→∞

1−FZ2
(vx)

1−FZ2
(x)

< 1 for some

v > 1, see the remark before Theorem 2.1 in Tang (2006). Moreover, we observe that

lim
x→∞

1− FZ1(vx)

1− FZ2(x)
= lim

x→∞

etvx(1− FZ1(vx))

et(v−1)xetx(1− FZ2(x))
= 0, for some t > 0, for all v ≥ 1, (5.19)

since the numerator converges to zero and the denominator converges to infinity. By Lemma

5.1, BE1 = Z1Z2 is subexponential with all moments finite. Finally, we prove that

lim
x→∞

1− FXn(x)

1− FBE1(x)
= lim

x→∞

etx(1− FXn(x))

etx(1− FBE1(x))
= 0, for some t > 0,

since the numerator converges to zero and the denominator converges to infinity. We can

deduce that 1−FBE1(x) > 1−FXn(x) for all sufficiently high x, and V aRγ[BE1] > V aRγ[Xn]

for all sufficiently high γ.

Point 3. If the distribution of Xn satisfies the assumption that lim supx→∞
1−FXn (vx)

1−FXn (x)
< 1 for

some v > 1, then the distribution of X α̃2

n , given by FXα̃
n
(x) = FXn(x

1
α̃ ), also satisfies this

assumption. If X α̃
n has a light-tailed distribution, then the result follows from point 2. Let

X α̃
n be subexponential. We recall that we put Z2 = e(1−α̃2)

(
m̃+ s̃2

2

)
+
√
α̃2(1−α̃2)s̃ξ. We show that

lim
x→∞

1− FZ2(vx)

1− FZ2(x)
≤ lim

x→∞

(log(x)− a)2 + b2

(log(vx)− a)(log(x)− a)

e−
(log(vx)−a)2

2b2

e−
(log(x)−a)2

2b2

= lim
x→∞

(log(x)− a)2 + b2

(log(vx)− a)(log(x)− a)
e

− log(v)

2b2
(2(log(x)−a)+log(v)) = 0, for all v > 1,
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where a, b are the parameters of Z2, and we use bounds for the tail of normal distribution,

see Gordon (1941). The statement now follows from Lemma 5.1.

Point 4. We can immediately prove the relation:

1− FXα̃2
n

(x) = L(x
1
α̃2 )x−

θ
α̃2 ∼ CL(x)x−

θ
α̃2 .

By Lemma 5.1, we derive the asymptotic formula:

1− FBE1(x) ∼ CE
[
Z

θ
α̃2

2

]
L(x)x−

θ
α̃2 . (5.20)

Since Xn has a Pareto-type distribution 1−F (x) = L(x)x−θ, we have the asymptotic formula:

V aRγ

[
Xn

]
∼
(
1− γ

)−1/θ
L̃
( 1

1− γ

)
, γ → 1, (5.21)

where L̃ denotes the de Bruyn conjugate of L, see (2.7) and Proposition 2.5 from Berlaint

et al. (2004). Using (5.20)-(5.21) and the arguments from Proposition 2.6.vi from Resnick

(2007), we can establish that

V aRγ[BE1] ∼
(
CE
[
Z

θ
α̃2

1

]) α̃2θ
(1− γ)−

α̃2

θ L̃
( 1

1− γ

)
∼

(
CE
[
Z

θ
α̃2

1

]) α̃2θ
(1− γ)

1−α̃2
θ V aRγ[Xn], γ → 1,

and the result is proved. �

The proof of Lemma 4.1. Let k = α̃2. We simply denote X = Xn, ψ = ψXn . We choose

α ∈ (0, 1). We introduce the functions:

f(k) = E[Xk] = E[ek log(X)], h(k) = log f(2k)− 2 log f(k) + k(1− k) log(1 + ψ2).

It is easy to show that h(k) is continuous on (0, 1). We look for k ∈ (0, 1) such that

h(k) = log(1 + α2ψ2). (5.22)

We have h(0) = 0 and h(1) = log(1 + ψ2) > log(1 + α2ψ2). It is known that k 7→ f(k) is

log-convex. Hence h′(k) = 2
(
d
dx

log f(x)|x=2k − d
dx

log f(x)|x=k

)
+ (1 − 2k) log(1 + ψ2) > 0,

and k 7→ h(k) is increasing on (0, 1
2
). We conclude that there exists at least one solution to

(5.22).

Gamma distribution. Let X ∼ Gamma(a, b). By straightforward calculations, we show that

f(k) = E[Xk] = bk
Γ(k + a)

Γ(a)
,

d2

dk2
log f(k) =

d2

dk2
log Γ(k + a),
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and

d2

dk2
h(k) = 4

d2

dx2
log Γ(x+ a)|x=2k − 2

d2

dx2
log Γ(x+ a)|x=k − 2 log(1 + ψ2)

=
d2

dk2
log
( Γ(2k + a)(

Γ(k + a)
)2

)
− 2 log(1 + ψ2) =

d2

dk2
g(k)− 2 log(1 + ψ2),

where we define

g(k) = log
( Γ(2k + a)(

Γ(k + a)
)2

)
.

Let a ≥ 1
2
. By Theorem 5 from Qi et al. (2008), the function g is 3-log-concave, which means

that d3

dk3
log g(k) ≤ 0. We can conclude that the function k 7→ d2

dk2
log g(k) is decreasing.

We have to consider three cases: 1) d2

dk2
g(k) > 2 log(1 + ψ2) for all k ∈ (0, 1): the function

k 7→ h(k) is convex on (0, 1); 2) d2

dk2
g(k) < 2 log(1 + ψ2) for all k ∈ (0, 1): the function

k 7→ h(k) is concave on (0, 1); 3) There exists k0 ∈ (0, 1) such that d2

dk2
g(k) > 2 log(1 + ψ2)

for 0 < k < k0 and d2

dk2
g(k) < 2 log(1 + ψ2) for 1 > k > k0: the function k 7→ h(k) is convex

on (0, k0) and concave on (k0, 1). In all three cases, the properties imply, together with the

properties mentioned in the beginning, that there exists a unique solution to (5.22).

Let a < 1
2
. From series representation of trigamma function, we deduce that the second

derivative of loggamma function is positive. By inequality (1.10) from Guo et al. (2015),

which gives upper and lower bounds on the second derivative of loggamma function, we get

d2

dk2
g(k) ≤ 2a+ 3

(2k + a+ 1
2
)(k + a+ 1)

+
2a2 − 4k2

(2k + a)2(k + a)2
. (5.23)

Since k 7→ h(k) is increasing on (0, 1
2
), we only have to consider k ∈ (1

2
, 1). Using (5.23) and

the assumption that k ∈ (1
2
, 1), we derive the inequality

d2

dk2
h(k) =

d2

dk2
g(k)− 2 log

(
1 +

1

a

)
≤ 2
( 1

a+ 3
2

− log
(
1 +

1

a

)
+

a2 − 2k2

(2k + a)2(k + a)2

)
. (5.24)

Let us introduce the function p(a) = 1
a+ 3

2

− log(1 + 1
a
). We have p(0+) = −∞ and p(1

2
) =

1
2
− log 3 < 0. Moreover, by straightforward calculation, we can check that p′(a) > 0 for

a ∈ (0, 1
2
). Consequently, the first two terms on the right hand side of (5.24) are negative. It

is clear that the last term in (5.24) is also negative. Hence, we have proved that the function

k 7→ h(k) is concave on (1
2
, 1). This property implies, together with the properties mentioned

in the beginning, that there exists a unique solution to (5.22).

Pareto distribution. Let X ∼ Pareto(x0, θ) with 1 − F (x) = xθ0x
−θ for x > x0. We assume

that θ > 2 so that V ar[X] <∞. By straightforward calculations, we can show that

f(k) = E[Xk] =
θxk0
θ − k

,
d

dk
log f(k) = log(x0) +

1

θ − k
.
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We can also calculate that

d

dk
h(k) =

2

θ − 2k
− 2

θ − k
− (2k − 1) log(1 + ψ2).

Since ψ2 = 1
θ(θ−2)

and log(1 + x) < x, we can prove the inequality:

d

dk
h(k) >

θ2 + θ(6k2 − 7k) + 2k2 − 4k3

(θ − 2)θ(θ − 2k)(θ − k)
. (5.25)

The denominator of the fraction on the right hand side of (5.25) is always positive and the

numerator is a quadratic function in θ. The larger root of this quadratic function is given by

θ̃(k) = 1
2
k(
√

36k2 − 68k + 41−6k+7). One can check that the maximal value of the function

k 7→ θ̃(k) on (0, 1) is equal to θ∗ ≈ 2.15. Consequently, we can conclude that for θ > θ∗ the

first derivative (5.25) is positive for any k ∈ (0, 1), meaning that the function k 7→ h(k) is

increasing on (0, 1). This property implies, together with the properties mentioned in the

beginning, that there exists a unique solution to (5.22).

Weibull distribution. The proof is analogous as for Gamma distribution.

Loggamma distribution. The proof is analogous as for Pareto distribution. �
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