

PROVISIONNEMENT EN ASSURANCE NON-VIE : EXTENSION STOCHASTIQUE DE MÉTHODES USUELLES ET APPLICATION AU CALCUL DE L'AJUSTEMENT POUR RISQUE SOUS IFRS 17

Audrey SENTUCQ

24/10/2023

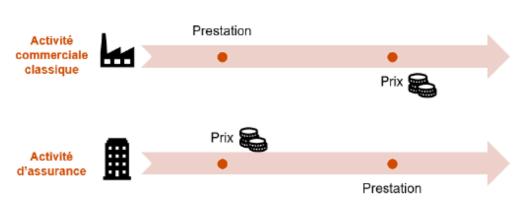
SOMMAIRE

Introduction

- 1 Méthodes usuelles de provisionnement
- 2 Extensions stochastiques
- 3 Application au calcul de l'ajustement pour risque sous IFRS 17

Conclusion

Le cycle inversé et les catégories de provisions



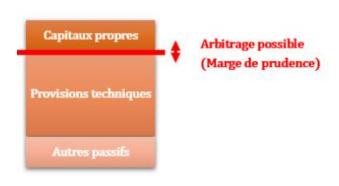
- >Les provisions mathématiques des rentes
- >Les provisions pour primes non acquises
- >Les provisions pour risques en cours
- ➤ Les provisions pour sinistres à payer
- Les provisions pour risques croissants
- Les provisions pour risques d'exigibilité
- **≻**Les provisions pour égalisation

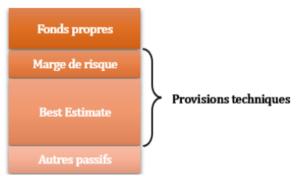
Les différentes normes

Normes françaises

Solvabilité II

• IFRS 17



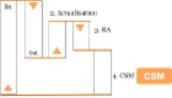


Zoom sur IFRS 17

Modèle Général (GMM, ex. BBA)

Modèle Général d'évaluation des passifs où la CSM (marge sur services contractuels) représente les profits futurs dégagés ultérieurement en résultat sur la période de couverture

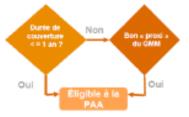
s. Flux de trésorerie futurs g. Actualisation



Exemple de contrat Temporaire décès > 1 an

Premium Allocation Approach (PAA)

Approche simplifiée sur option du Modèle Général pour l'estimation des passifs des sinistres non survenus selon une approche de « report des primes »



Exemple de contrat Multi-risques habitation

Variable Fee Approach (VFA)

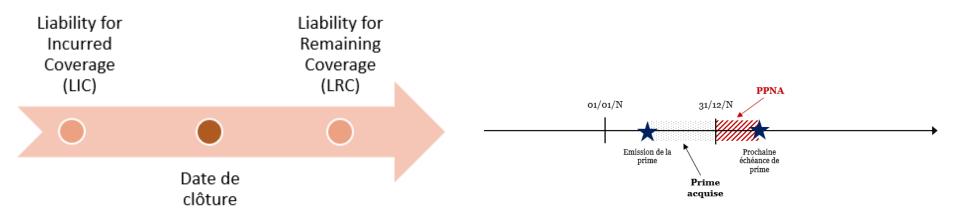
Approche adaptée du Modèle Général obligatoire pour les contrats participatifs « directs »

Exemple de contrat

Epargne euro

4, rue Chauveau-Lagarde - 75008 Paris - tél. 01 44 51 72 72

Le modèle PAA

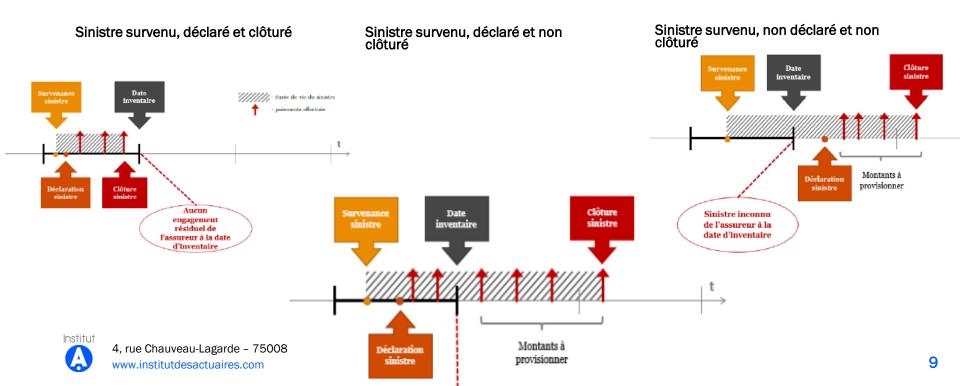


$$Passif_{PAA} = PPNA_{LRC} - frais_{LRC} + BE_{LIC} + RA_{LIC}$$

1 •

Les méthodes usuelles de provisionnement

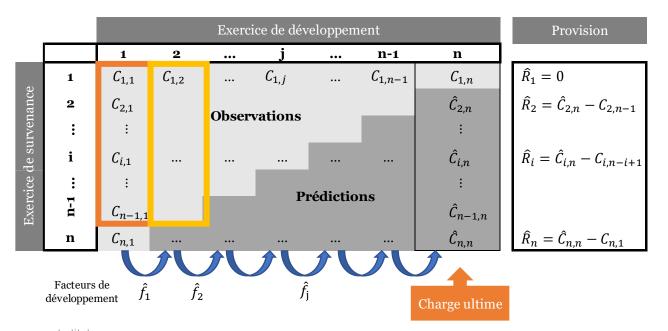
Le cycle de vie des sinistres

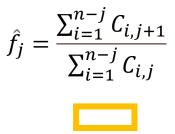


Les triangles de provisionnement

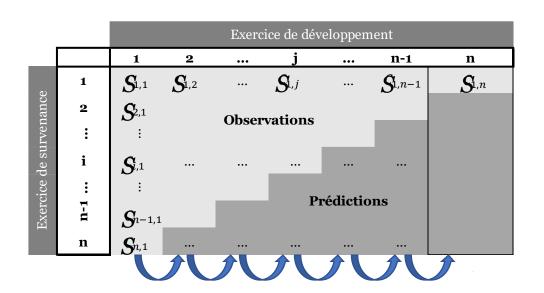
Accident				Develo	pment Ye	ar j	
Year i	1	2	3	4	j		J
1							
2							
3				$C_{i,j}$			
I-j		(obse	ervation	s)		
I-2 $I-1$					(to	$C_{i,j}$ be predict	ted)
I							

Chain Ladder





Bornhuetter-Ferguson



$$\widehat{R_i^{BF}} = (1 - \hat{z}_{n+1-i})\widehat{U}_i$$

$$\widetilde{m}_j = \frac{\sum_{i=1}^{n+1-j} S_{i,j}}{\sum_{i=1}^{n+1-j} v_i \hat{r}_i}$$

$$\hat{z}_j = \frac{\widetilde{m}_1 + \dots + \widetilde{m}_j}{\widetilde{m}_1 + \dots + \widetilde{m}_n + \widetilde{m}_{n+1}}$$

Coût Moyen

1. Chain Ladder sur le triangle des nombres

2. Chain Ladder sur le triangle des coûts moyens

3. Calcul de la provision grâce à la charge finale qui est le produit des nombres ultimes et des coûts moyens ultimes

Méthode par séparation

	Années de développement						
Années de survenance	1	2	3				n
1		$y_2\lambda_3$	$y_3\lambda_4$				$y_n \lambda_n$
2	$y_1\lambda_3$	$y_2\lambda_4$					
3	$y_1\lambda_4$						
n	$y_1\lambda_n$		_		_		,

$$\hat{\lambda}_k = \frac{d_k}{(1 - \hat{y}_n - \hat{y}_{n-1} - \dots - \hat{y}_{k+1})}$$

$$\hat{y}_j = \frac{v_j}{(\hat{\lambda}_j + \hat{\lambda}_{j+1} + \dots + \hat{\lambda}_n)}$$

$$\hat{R}_i = \sum_{j>n+1-i} \hat{N}_i \, \hat{y}_j \, \hat{\lambda}_k$$

2 •

Les méthodes stochastiques

Mesure de l'incertitude

L'incertitude est mesurée par la MSEP (Mean Square Error of Prediction) définie comme :

$$MSEP(\hat{\theta}) = E[(\theta - \hat{\theta})^2 | D]$$

Elle peut être décomposée en deux termes :

- Une erreur d'estimation qui traduit l'incertitude provenant de l'estimation des paramètres;
- ➤ Une erreur de processus qui correspond à la manifestation d'une réalisation d'un processus aléatoire.

Méthodes stochastiques

CL

$$\widehat{MSEP}(\hat{R}_{i}) = E\left(\left(\hat{C}_{i,n} - C_{i,n}\right)^{2} \middle| D\right) = \underbrace{Var(C_{i,n} | D)}_{\gamma} + \underbrace{\left(\underbrace{E(C_{i,n} | D)}_{j} - \hat{C}_{i,n}\right)^{2}}_{\gamma} = \hat{C}_{i,n}^{2} \sum_{j=n-i+1}^{n-1} \underbrace{\left(\underbrace{\widehat{MSEP}\left(\frac{C_{i,j+1}}{C_{i,j}}\right)}_{\hat{f}_{j}^{2}} + \underbrace{\widehat{MSEP}(\hat{f}_{j})}_{\hat{f}_{j}^{2}}\right)}_{\gamma}$$

Erreur de processus Erreur d'estimation

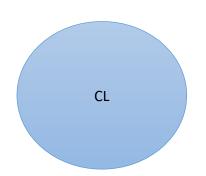
BF

$$\widehat{MSEP}(\widehat{R}_{i}) = E\left(\left(\widehat{R}_{i}^{BF} - R_{i}^{BF}\right)^{2} \middle| D\right) = Var(\widehat{R}_{i}^{BF}) + Var(R_{i}^{BF})
= \left(\widehat{U}_{i}^{2} + Var(\widehat{U}_{i})\right) Var(z_{n+1-i}^{*}) + Var(\widehat{U}_{i})(1 - z_{n+1-i}^{*})^{2} + \widehat{U}_{i}\left(s_{n+2-i}^{*}\right)^{2} + \dots + s_{n+1}^{*}\right)$$

 CM

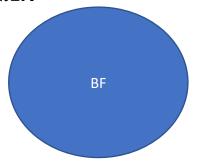
$$\widehat{MSEP}(\widehat{R}_{i}) = \widehat{N}_{i,n}^{2} \widehat{\overline{X}}_{i,n}^{2} \sum_{k=n+1-i}^{n-1} \left(\frac{\widehat{\sigma}_{k}^{2(X)} / (\widehat{f}_{k}^{(X)})^{2}}{w_{i,k}^{(X)} \overline{X}_{i,k}^{\alpha}} \prod_{l=k+1}^{n-1} \left(1 + \frac{\widehat{\sigma}_{k}^{2(X)} \mathbf{1}_{\{\alpha=\mathbf{0}\}}}{w_{i,l}^{(X)} (f_{l}^{(X)})^{2}} \right) + \frac{\widehat{\sigma}_{k}^{2(N)} / (\widehat{f}_{k}^{(N)})^{2}}{w_{i,k}^{(N)} N_{i,k}^{\alpha}} \prod_{l=k+1}^{n-1} \left(1 + \frac{\widehat{\sigma}_{k}^{2(N)} \mathbf{1}_{\{\alpha=\mathbf{0}\}}}{w_{i,l}^{(N)} (f_{l}^{(N)})^{2}} \right) \right)$$
 Erreur de processus
$$\widehat{N}_{i,n}^{2} \widehat{\overline{X}}_{i,n}^{2} \sum_{k=n+1-i}^{n-1} \left(\frac{\widehat{\sigma}_{k}^{2(X)} / (\widehat{f}_{k}^{(X)})^{2}}{\sum_{j=1}^{n-k} w_{j,k}^{(X)} \overline{X}_{j,k}^{\alpha}} + \frac{\widehat{\sigma}_{k}^{2(N)} / (\widehat{f}_{k}^{(N)})^{2}}{\sum_{j=1}^{n-k} w_{j,k}^{(N)} N_{j,k}^{\alpha}} + \frac{\widehat{\sigma}_{k}^{2(N)} / (\widehat{f}_$$

Méthodes stochastiques

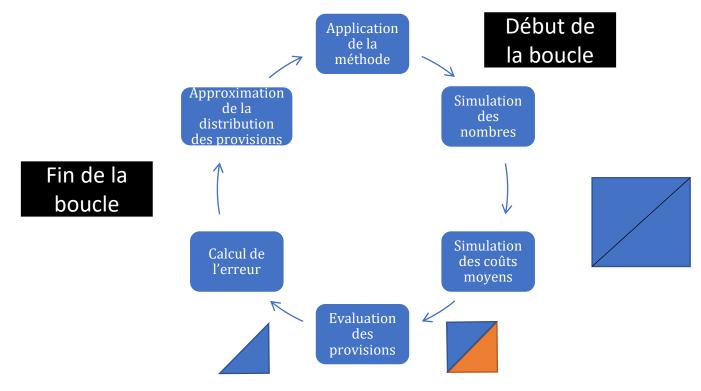


Méthodes stochastiques

$$\sum_{m=1}^{M} MSEP(R_m) + 2 \sum_{1 \leq m < l \leq M} \rho_{l,m} \left(\sqrt{Var(\hat{R}_m | D)} \sqrt{Var(\hat{R}_l | D)} + \sqrt{Var(R_m | D)} \sqrt{Var(R_l | D)} \right)$$



Méthodes stochastiques



3 •

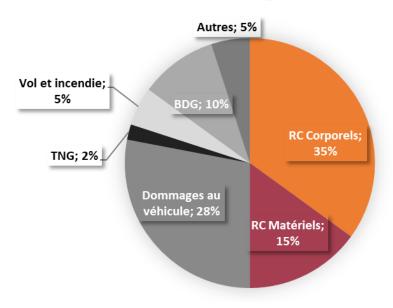
Application au calcul de l'ajustement pour risque

Les chiffres

7,7 Millions de sinistres

RC Corporels; 2% Autres; 12% RC Matériels; 18% Bris de glace Dommages au (BDG); 34% véhicule; 31% Vol et incendie; 2% TNG; 1%

14,7 Mds€ de charge de sinistres



Les données

2 jeux de données réelles :

- ➤ Sinistres en affaires directes sur des polices françaises
- ➤ Sinistres en acceptations de réassurance pour des polices anglaises

Pour les sinistres en affaires directes, les données sont séparées en 3 catégories :

- > Attritional
- ➤ Large
- Exceptionnel

Résultats des méthodes

Méthodes déterministes

Méthodes stochastiques

	Classe	Classe	Classe	Portefeuille		Classe	Classe	Classe « Exceptionnelle »	Portefeuille
	« Attritional »	« Large »	« Exceptionnelle »	Anglais		« Attritional »	« Large »	« Exceptionnene »	Aligiais
Chain Ladder		402			Chain Ladder		8,3%		
Chain Ladder pondéré	-28	509	241	388	Chain Ladder pondéré	15,0%	9,8%	13,3%	9,1%
Bornhuetter-Ferguson	-6	556	375	336	Bornhuetter-Ferguson	10,7%	7,8%	11,7%	7,6%
pondéré					pondéré				
Coût Moyen			336		Coût Moyen			10,4%	
Coût Moyen pondéré			280		Coût Moyen pondéré			13,2%	
Verbeek-Taylor			246		Verbeek-Taylor			11,1%	

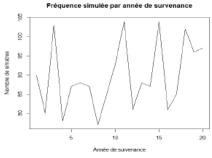
Les données

Données simulées cohérentes avec l'expérience d'un portefeuille de responsabilité civile automobile.

Elles sont basées sur des hypothèses de distribution pour :

- La fréquence
- ➤ Le coût
- > Le délai de déclaration et de traitement
- Le nombre de paiement, leur montant et le délai
- L'inflation

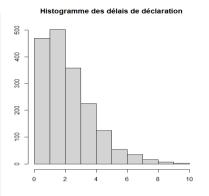
Application au calcul de l'ajustement pour risque



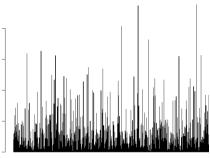
14		٠
7.5		• •
2		00 0
		• •
œ	-	∞ ∞ 00 0
		0000 0000 0 0 0000 00
0	-	•*************************************
		
4	-	■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
	_	-
2		_

Montant

1	Module	Loi	Paramètres			
	Fréquence des sinistres	Poisson	90			
	Montant des sinistres	Weibull	Shape = 0.667 ; Scale = 119350			
	Délai de déclaration	Weibull	Shape = 1.31 ; Scale = 2.32			
	Délai de traitement	Weibull	Shape = 2.47; Scale = 10.669			
	Nombre de paiements	 Si montant 	$<$ Q1, $\mathbb{P}(Nombre = 1) = \mathbb{P}(Nombre = 2) = \frac{1}{2}$			
		• Si Q1 ≤ mo	$\operatorname{ntant} \leq \operatorname{Q3}, \mathbb{P}(\operatorname{Nombre} = 2) = 1/3 \text{ et } \mathbb{P}(\operatorname{Nombre} = 3) = 2/3$			
		 Sinon, la dis 	stribution est géométrique $G(1/2)$ translatée de 4			
1	Montant des paiements	Beta	• Nombre de paiement = 2 ou 3			
	partiels	conditionnelle au nombre de	$Beta(lpha,eta)$ d'espérance $\dfrac{1}{nombre\ de\ paiements}$ et de variance 0.10			
		paiements	 Paiement ≥ 4 			
7			Les 2 derniers paiements en % du montant total :			
			$1 - Beta(\alpha, \beta)$ d'espérance 0.05 et de variance 0.2			
			L'avant-dernier paiement :			
			$Beta(\alpha,\beta)$ d'espérance 0.9 et de variance 0.03			
			Les autres suivent le cas précédent (paiement = 2 ou 3)			
	Délai entre les paiements Weibull		Shape : paramètre qui permet d'obtenir une espérance égale au			
	partiels		Délai de clôture moyen (9.46)			
			Nombre de paiements			
			Scale = 3.128794			
	Inflation	$f(t) = (1 + \alpha)^t$	$\alpha = 2\%$			



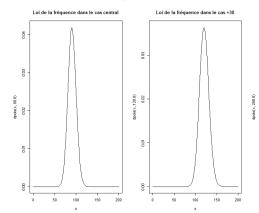
Représentation des montants individuels

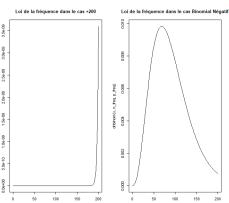


4, rue Chauveau-Lagarde – 75008 Paris – tél. 01 44 51 72 72

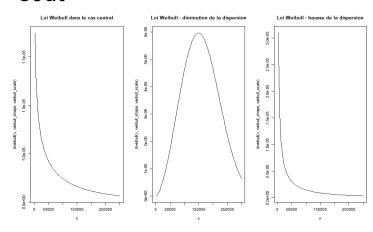
Sensibilités

Fréquence



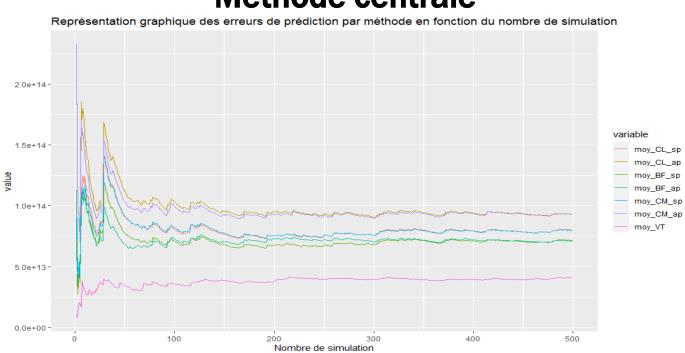


• Coût



Module	Cas central	Sensibilité 1	Sensibilité 2
Fréquence (lambda)	90,6	120,6	290,6
Coût (shape)	0,667	2,667	0,417
Délai de déclaration (moyenne)	2,14	1,14	0,14
Délai de traitement (moyenne)	9,46	7,46	5,46
Inflation future	Constante à 2%	Constante à 5%	Suivant les projections macroéconomiques

Méthode centrale

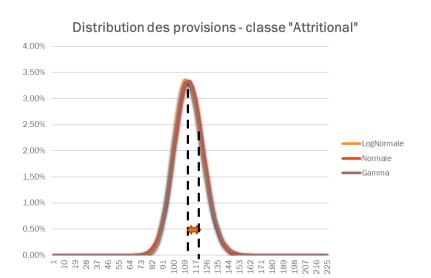


L'ajustement pour risque

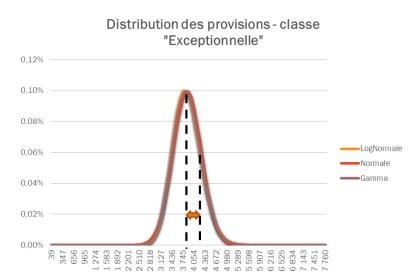
- Principes généraux
- ➤ Cohérence avec le niveau de risque
- Cohérence avec la duration des engagements
- Cohérence avec les données
- Cohérence avec la sévérité

- Lois utilisées
- ➤ Loi lognormale
- Loi normale
- Loi gamma

Calcul de l'ajustement pour risque



Mesure de risque	Niveau de quantile	Loi Lognormale	Loi Normale	Loi Gamma
VaR	80%	9,81	10,06	9,92



Mesure de	Niveau de quantile	Loi Lognormale	Loi Normale	Loi Gamma
risque				
VaR	80%	328,90	337,22	332,55

Conclusion

 Nécessité de calculer l'ajustement pour risque

Nouvelle norme IFRS 17

Méthodes stochastiques

 Evaluer l'erreur de prédiction Méthodes sans hypothèse de distribution

> Prochaine étape

Merci de votre attention

Avez-vous des questions?

