

L'intérêt des modèles DFA en assurance Non-Vie

Plan de l'atelier

- A. Introduction aux modèles DFA
 - Les limites des modèles déterministes
 - Les modèles DFA
 - Applications possibles des modèles DFA en assurance Non-vie
- B. Focus sur l'application des modèles DFA pour l'optimisation de la réassurance
 - Le durcissement du marché de la réassurance
 - L'intérêt des modèles DFA pour l'optimisation de la réassurance
- C. Exemple applicatif de mise en place d'un modèle DFA pour un organisme fictif simplifié
 - Modélisation et analyse des portefeuilles de risques non-Cat. et Cat.
 - Production d'indicateurs financiers et économiques par la réalisation de plusieurs milliers de simulation
 - Conception et modélisation de plusieurs stratégies de réassurance
 - Sélection de la stratégie de couverture des portefeuilles par optimisation sous contrainte
- D. Conclusion

Plan de l'atelier

- A. Introduction aux modèles DFA
 - Les limites des modèles déterministes
 - Les modèles DFA
 - Applications possibles des modèles DFA en assurance Non-vie
- B. Focus sur l'application des modèles DFA pour l'optimisation de la réassurance
 - Le durcissement du marché de la réassurance
 - L'intérêt des modèles DFA pour l'optimisation de la réassurance
- C. Exemple applicatif de mise en place d'un modèle DFA pour un organisme fictif simplifié
 - Modélisation et analyse des portefeuilles de risques non-Cat. et Cat.
 - Production d'indicateurs financiers et économiques par la réalisation de plusieurs milliers de simulation
 - Conception et modélisation de plusieurs stratégies de réassurance
 - Sélection de la stratégie de couverture des portefeuilles par optimisation sous contrainte
- D. Conclusion

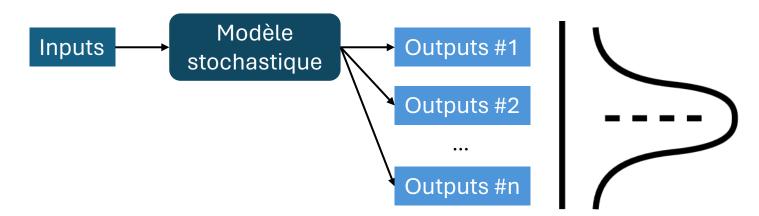
Les limites des modèles déterministes

Les modèles déterministes sont largement utilisés dans le domaine de l'assurance non-vie pour évaluer les risques, ils offrent une approche simple et intuitive.

Ces modèles reposent sur des hypothèses simplifiées et les calculs sont basés sur des valeurs moyennes. Un jeu d'inputs donnera systématiquement le même résultat :

Les modèles déterministes présentent néanmoins certaines limites :

- Forte sensibilité aux biais et aux erreurs de spécification
- Non-prise en compte de la variabilité intrinsèque des événements assurés
- Manque de sophistication dans la prise en compte de la corrélation entre les risques
- Difficultés dans la prise en compte de l'incertitude et de la volatilité des variables clés



Les modèles Stochastiques

L'approche par les modèles stochastiques permet de pallier les limites des modèles déterministes.

Ces modèles, plus avancés et plus sophistiqués, permettent en effet de prendre en compte la variabilité, l'incertitude et la corrélation entre les risques et entre les événements de manière plus rigoureuse.

En utilisant des techniques probabilistes et des simulations, les modèles stochastiques permettent aux compagnies d'assurance d'estimer les distributions de probabilité des pertes futures et d'évaluer les conséquences financières potentielles de différents scénarios :

Les modèles Dynamic Financial Analysis (DFA)

Les modèles DFA, intègrent des techniques stochastiques et des simulations pour modéliser les interactions entre les risques d'assurance, les risques financiers et les décisions stratégiques de l'entreprise.

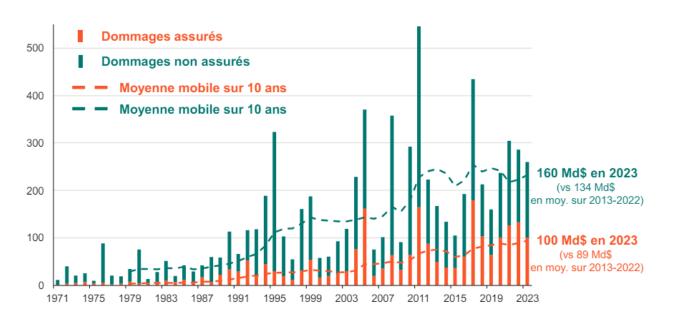
Ils sont utilisés pour évaluer et gérer les risques financiers de manière proactive et intégrée : Contrairement aux approches traditionnelles qui se concentrent principalement sur les risques individuels, les modèles DFA prennent en compte la dynamique complexe des interactions entre les différents facteurs de risque et les décisions de gestion associées.

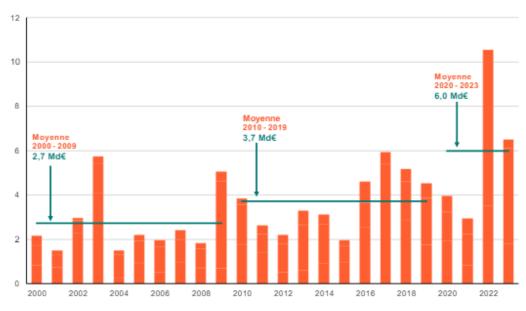
En simulant une multitude de scénarios possibles, ces modèles permettent aux compagnies d'assurance d'évaluer l'impact financier global de différentes stratégies de gestion des risques et de prendre des décisions éclairées pour optimiser leur rentabilité et leur solvabilité à long terme.

Applications possibles des modèles DFA en assurance Non-vie

Les applications possibles des modèles DFA en assurance Non-vie sont nombreuses, voici quelques exemples :

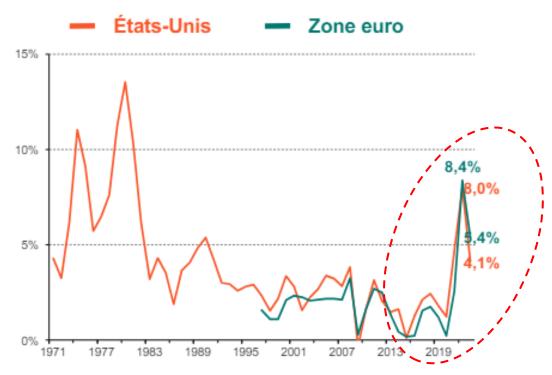
- Modélisation (réglementaire et/ou interne) de capital économique
- Définition d'une stratégie de développement basée sur l'allocation de capital économique et le RORAC
- Evaluation d'un projet de fusion acquisition
- Evaluation des impacts d'un transfert/d'une reprise de portefeuille
- Définition d'une stratégie d'allocation d'actifs et optimisation de portefeuilles financiers
- Provisionnement
- Tarification
- Optimisation des couvertures de réassurance
- ..


Plan de l'atelier


- A. Introduction aux modèles DFA
 - Les limites des modèles déterministes
 - Les modèles DFA
 - Applications possibles des modèles DFA en assurance Non-vie
- B. Focus sur l'application des modèles DFA pour l'optimisation de la réassurance
 - Le durcissement du marché de la réassurance
 - L'intérêt des modèles DFA pour l'optimisation de la réassurance
- C. Exemple applicatif de mise en place d'un modèle DFA pour un organisme fictif simplifié
 - Modélisation et analyse des portefeuilles de risques non-Cat. et Cat.
 - Production d'indicateurs financiers et économiques par la réalisation de plusieurs milliers de simulation
 - Conception et modélisation de plusieurs stratégies de réassurance
 - Sélection de la stratégie de couverture des portefeuilles par optimisation sous contrainte
- D. Conclusion

Le durcissement du marché de la réassurance

Les événements climatiques se sont intensifiés ces dernières années :



Le durcissement du marché de la réassurance

Des niveaux d'inflations importants sont observés depuis 2022 :

Le durcissement du marché de la réassurance

Le marché de la réassurance s'est considérablement tendu ces dernières années consécutivement à l'intensification des événements climatiques et au contexte inflationniste.

Les derniers renouvellements ont en effet été particulièrement difficiles face aux exigences et à l'appétit au risque en berne des réassureurs.

Les compagnies d'assurance non-vie ont ainsi fait face à d'importantes hausses des prix combinées à des réductions des capacités offertes par les réassureurs, en particulier sur les risques climatiques.

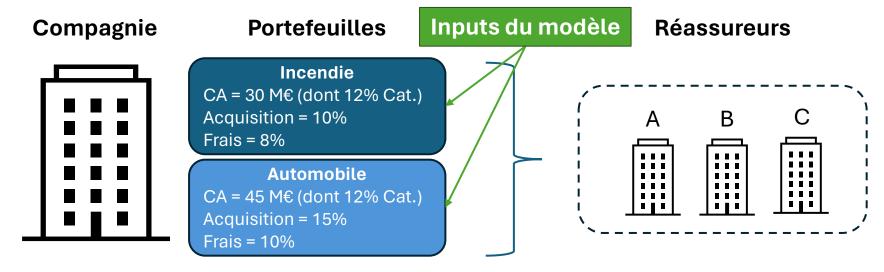
L'intérêt des modèles DFA pour l'optimisation de la réassurance

La réassurance joue un rôle essentiel, voir vital, pour les compagnies non-vie en leur permettant de céder une partie des risques associés à leurs portefeuilles, de renforcer leur solvabilité, d'accéder à l'expertise et aux capacités financières des réassureurs, ainsi que de stimuler l'innovation et le développement de nouveaux produits.

En tant que pilier fondamental du secteur de l'assurance, la réassurance continue d'être un instrument indispensable pour assurer la stabilité et la durabilité des compagnies d'assurance non-vie dans un environnement en constante évolution.

À ce titre, les cédantes doivent impérativement maîtriser tous les aspects du processus de réassurance : de l'analyse approfondie des portefeuilles sous-jacents à la conception, l'optimisation, la négociation et la gestion des couvertures de réassurance sous contraintes internes (cadre d'appétence au risque) et réglementaires (exigences en matière de solvabilité).

Les modèles DFA permettent de répondre efficacement à ces enjeux !



Plan de l'atelier

- A. Introduction aux modèles DFA
 - Les limites des modèles déterministes
 - Les modèles DFA
 - Applications possibles des modèles DFA en assurance Non-vie
- B. Focus sur l'application des modèles DFA pour l'optimisation de la réassurance
 - Le durcissement du marché de la réassurance
 - L'intérêt des modèles DFA pour l'optimisation de la réassurance
- C. Exemple applicatif de mise en place d'un modèle DFA pour un organisme fictif simplifié
 - Modélisation et analyse des portefeuilles de risques non-Cat. et Cat.
 - Production d'indicateurs financiers et économiques par la réalisation de plusieurs milliers de simulation
 - Conception et modélisation de plusieurs stratégies de réassurance
 - Sélection de la stratégie de couverture des portefeuilles par optimisation sous contrainte
- D. Conclusion

Présentation du cas pratique

La compagnie souhaite revoir sa stratégie de réassurance pour optimiser le RORAC attendu

Mise en place d'un modèle DFA

Notons que pour des raisons de simplification, nous nous restreindront à la modélisation des portefeuilles assurantiels.

Démarche globale de mise en place du modèle DFA

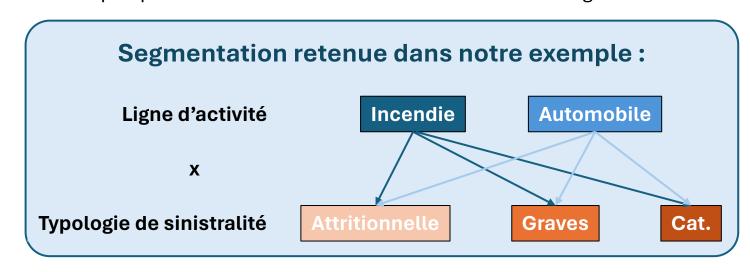
Choix de la segmentation des portefeuilles par source de risques

Modélisation des portefeuilles bruts selon la segmentation retenue

Modélisation de la structure de réassurance actuelle et conception de stratégies de réassurance alternatives

Construction des indicateurs financiers et économiques pour toutes les stratégies modélisées

Sélection de la stratégie optimale au regard des indicateurs construits


Choix de la segmentation pour la modélisation des portefeuilles

Cette première étape est déterminante : une mauvaise segmentation ne permettra pas de réaliser une bonne modélisation.

Il convient en effet de s'assurer que les segments de risque qui vont être modélisés sont suffisamment homogènes.

Quelques exemples de segmentation :

- Ligne d'activité
- Canal de distribution
- Apporteur
- > Typologie de sinistralité

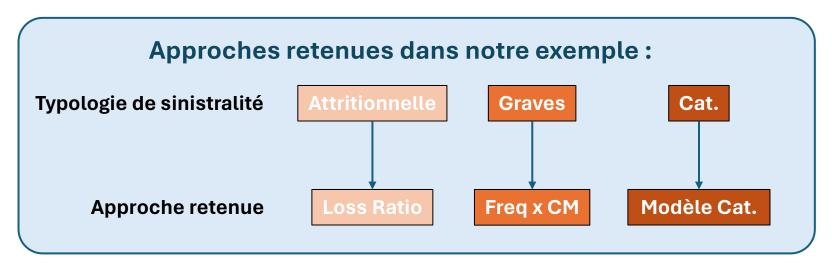
Identification des données nécessaires pour la modélisation des portefeuilles

Pour modéliser nos portefeuilles assurantiels bruts plusieurs données nous sont nécessaires :

- > Les primes
- Les frais
- Les sinistres

Ces données doivent être disponibles à la maille souhaitée. Notamment, il nous faut pouvoir :

- Distinguer les sinistres catastrophe des sinistres non-catastrophe
- Distinguer les graves des attritionnels
- Identifier la quote-part des primes relative aux garanties catastrophe



Préparation de la modélisation des portefeuilles de risques

Il convient de choisir une approche adaptée pour la modélisation de chaque segment de risque.

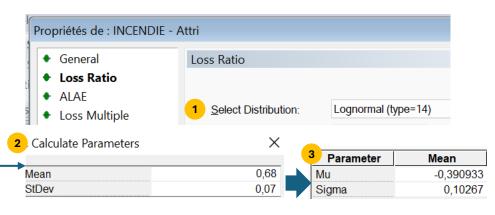
Cette approche va conditionner la manière dont les données seront utilisées pour constituer les inputs des modèles.

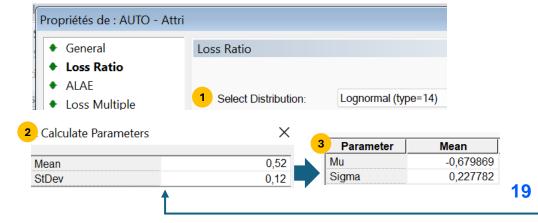
En effet, la sinistralité attritionnelle ne sera pas modélisée de la même manière que la sinistralité grave ou que la sinistralité catastrophe.

Modélisation de la sinistralité attritionnelle

Institut

L'analyse des données nous permet de définir les caractéristiques de la sinistralité attritionnelle de nos portefeuilles :


Incendie


S/P Attritionnel moyen observé = 68% Ecart-type = 7%

Automobile

S/P Attritionnel moyen observé = 52% Ecart-type = 12%

Nous retenons ensuite la loi Log-Normale (loi usuelle pour cette typologie de sinistralité et cette approche par Loss Ratio) pour modéliser notre sinistralité attritionnelle et calculons donc les paramètres correspondants :

Modélisation de la sinistralité grave

Pour la modélisation de la sinistralité grave, nous avons retenu l'approche « Fréquence x Coût Moyen.

Les fréquences annuelles moyennes observées dans sur l'historique de nos portefeuilles sont les suivantes :

Incendie Fréquence annuelle = 1

Automobile Fréquence annuelle = 1,5

La loi de probabilité associée à la distribution de la sévérité de ces sinistres, ainsi que ses paramètres, a été calibrée par la méthode du maximum de vraisemblance en testant différentes lois (exemple de méthode alternative possible si peu de données : Méthode des moments).

Incendie

Gamma Transformée Inverse

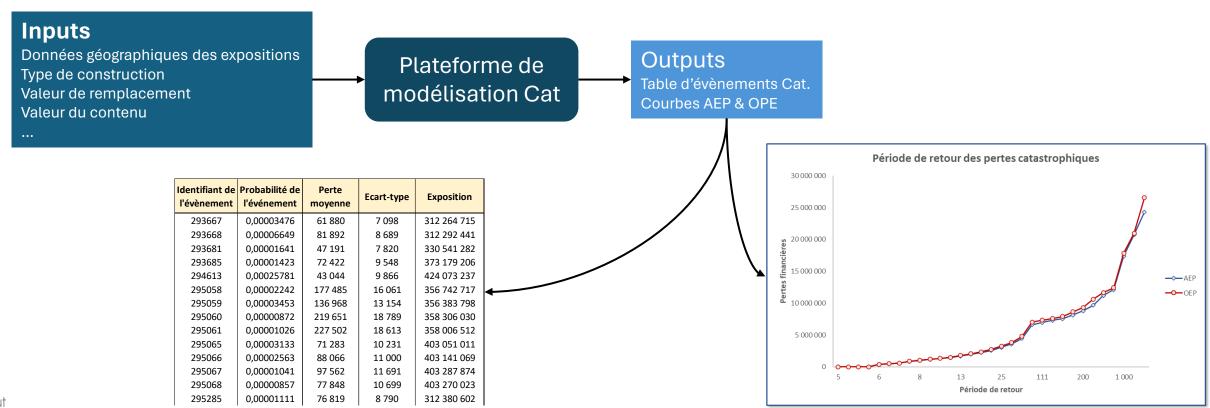
Alpha = 7,13

Theta = 156 328 838

Tau = 0.40

Automobile

Gamma Transformée Inverse


Alpha = 5,95

Theta = 121470450

Tau = 0.46

Modélisation de la sinistralité catastrophe

21

Modélisation de la sinistralité catastrophe

Table d'évènements Cat - Incendie

Identifiant de l'évènement	Probabilité de l'événement	Perte moyenne	Ecart-type	Exposition
293667	0,00003476	61 880	7 098	312 264 715
293668	0,00006649	81 892	8 689	312 292 441
293681	0,00001641	47 191	7 820	330 541 282
293685	0,00001423	72 422	9 548	373 179 206
294613	0,00025781	43 044	9 866	424 073 237
295058	0,00002242	177 485	16 061	356 742 717
295059	0,00003453	136 968	13 154	356 383 798
295060	0,00000872	219 651	18 789	358 306 030
295061	0,00001026	227 502	18 613	358 006 512
295065	0,00003133	71 283	10 231	403 051 011
295066	0,00002563	88 066	11 000	403 141 069
295067	0,00001041	97 562	11 691	403 287 874
295068	0,00000857	77 848	10 699	403 270 023
295285	0,00001111	76 819	8 790	312 380 602

53 703

88 452

42 806

49 477

43 013

41 875

91 884

51 814

58 431

42 009

l'événement

0,00002242

0,00003453

0,00000872

0,00001026

0,00002563

0,00001041

0,00000857

0,00001384

0,00001106

0,00001426

0,00003184

0,00001243

0,00001288

0,0001125

295059

295066

295067

295068

295292

295309

295311

295312

Table d'évènements Cat - Auto

Ecart-type

1 538

2 528

2 372

1 054

1 319

1 143

1 131

3 371

2 045

1 660

1872

1 335

Exposition

144 426 390

144 269 536

145 249 82

145 051 831

153 716 957

153 976 782

153 744 060

159 214 266

161 525 388

161 012 462

161 004 131

161 087 874

160 715 445

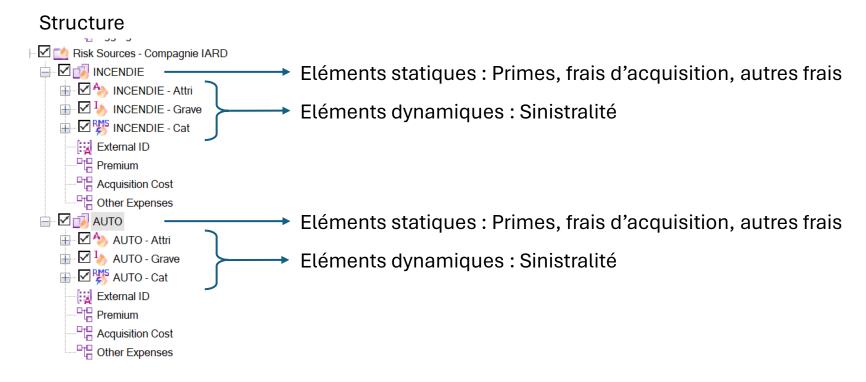
117 229 110

Base de données jointe des évènements Cat

Incendie

0,00006649

61 880

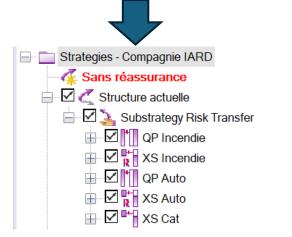

	293681	0,00001641	Incendie	47 191	7 820	330 541 282
	293685	0,00001423	Incendie	72 422	9 548	373 179 206
	294613	0,00025781	Incendie	43 044	9 866	424 073 237
J	295058	0.00002242	Incendie	177 485	16 061	356 742 717
V	293036	0,00002242	Auto	71 439	2 072	144 426 390
N	295059	0.00003453	Incendie	136 968	13 154	356 383 798
V	295059	0,00003455	Auto	53 703	1 538	144 269 536
N	295060	0.00000872	Incendie	219 651	18 789	358 306 030
7	295000	0,00000872	Auto	88 452	2 528	145 249 820
1	295061	0.00001026	Incendie	227 502	18 613	358 006 512
	295001	0,00001026	Auto	85 904	2 372	145 051 831
	295065	0,00003133	Incendie	71 283	10 231	403 051 011
	295066	0.00002563	Incendie	88 066	11 000	403 141 069
	293000	0,00002363	Auto	42 806	1 054	153 716 957
	295067	295067 0.00001041		97 562	11 691	403 287 874
	293007	0,00001041	Auto	49 477	1 319	153 976 782
	295068	0.00000857	Incendie	77 848	10 699	403 270 023
	293006	0,00000057	Auto	43 013	1 143	153 744 060
	295285	0,00001111	Incendie	76 819	8 790	312 380 602
	295292	0,00001384	Auto	41 875	1 131	159 214 266
	295305	0,00001106	Auto	91 884	3 371	161 525 388
	295306	0,00001426	Auto	55 845	2 045	161 012 462
	295309	0,00003184	Auto	51 814	1 660	161 004 131
	295311	0,00001243	Auto	58 431	1 872	161 087 874
	295312	0,00001288	Auto	42 009	1 335	160 715 445
	295375	0.0001125	Auto	94 170	2 581	117 229 110

Simulation d'évènements Cat

- Simulation de X événements Cat à partir d'une loi de Poisson
- Tirage aléatoire dans la base de données jointe des X évènements
- Simulation des pertes Cat et affectation par source de risk (Incendie/Auto) selon la répartition des évènements tirés aléatoirement

Synthèse des modèles bruts de réassurance

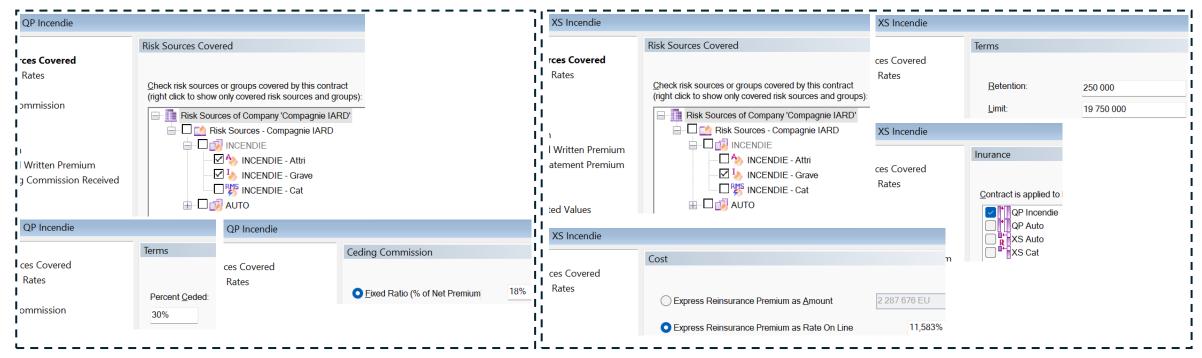
Synthèse des modèles bruts de réassurance


Synthèse des modèles bruts de réassurance

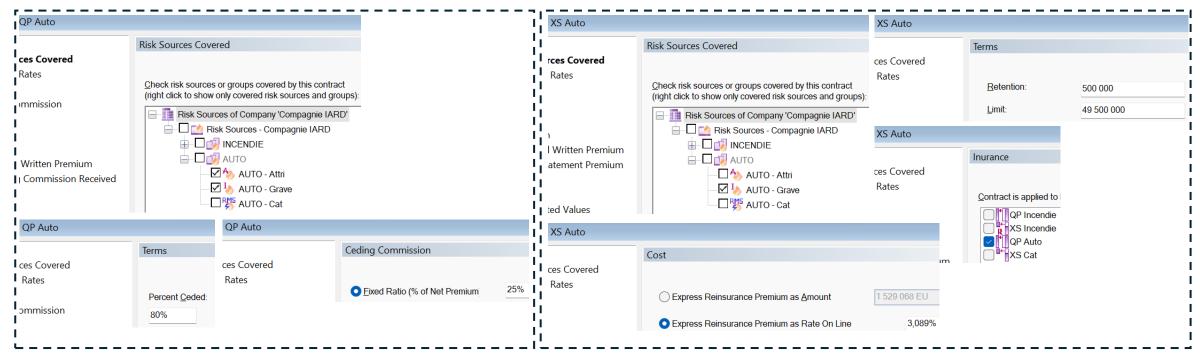
Eléments dynamiques

Branche	Modèle	Fréquence	Moyenne	Ecart-type	Loi	Paramètres
	S/P Attritionnel		68%	7%	Log-normale	Mu = -0,39 Sigma = 0,10
Incendie	Grave	1,00	2 194 382	2 500 773	Gamma Transformée Inverse	Alpha = 7,13 Theta = 156 328 838 Tau = 0,40
	Cat.	0,17	6 220 573	6 392 763	Modèle Cat.	
	S/P Attritionnel		52%	12%	Log-normale	Mu = -0,68 Sigma = 0,23
Auto	Grave	1,50	4 683 315	4 874 874	Gamma Transformée Inverse	Alpha = 4,47 Theta = 42 948 735 Tau = 0,52
	Cat.	0,27	2 517 929	2 992 920	Modèle Cat.	

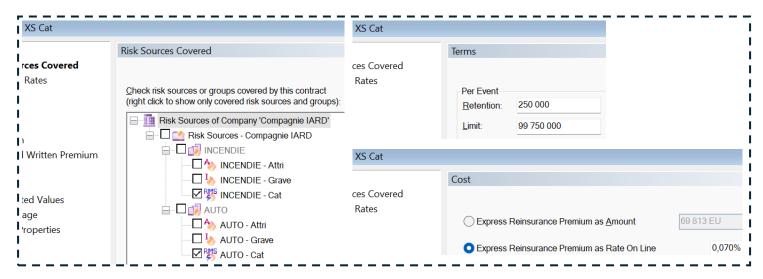
Nous disposons de tous les éléments pour modéliser les portefeuilles et les comptes de résultats bruts.


La prochaine étape est de modéliser la structure de réassurance actuelle de la compagnie.

Modélisation de la structure de réassurance actuelle

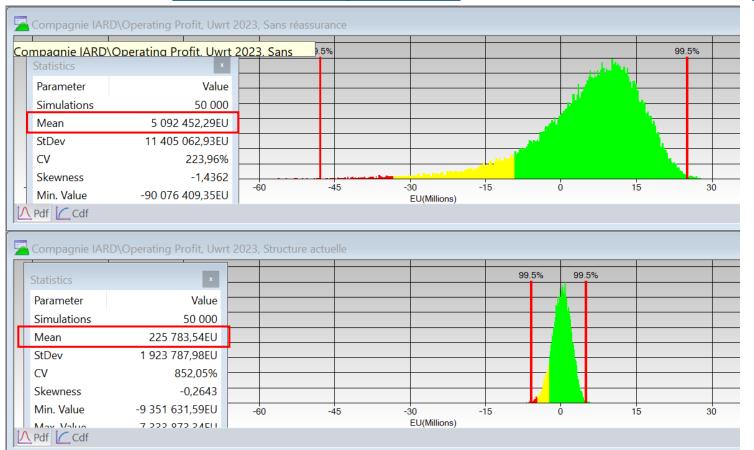

Traités Incendie hors Cat

Modélisation de la structure de réassurance actuelle


Traités Auto hors Cat

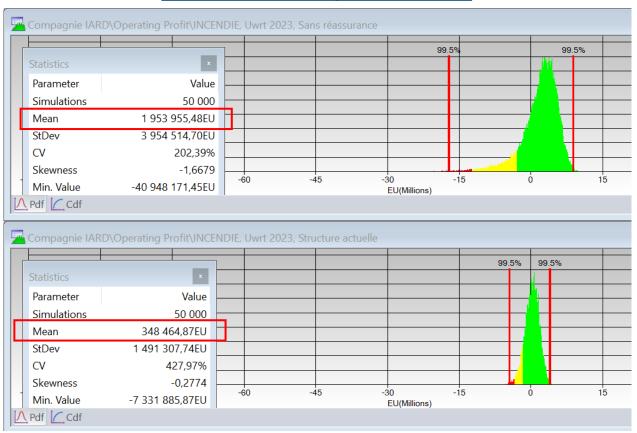
Modélisation de la structure de réassurance actuelle

Traité Cat


Le coût du traité XS Cat doit être correctement alloué entre les branches Incendie et Auto à l'aide des résultats

des simulations!

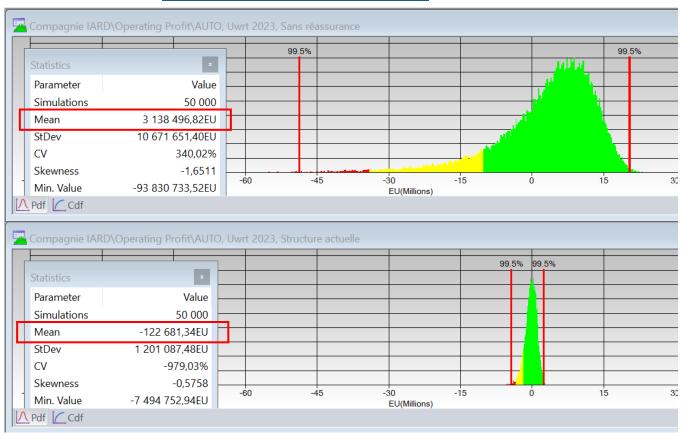
Distribution du <u>résultat technique Global</u> avec et sans réassurance (50 000 simulations)



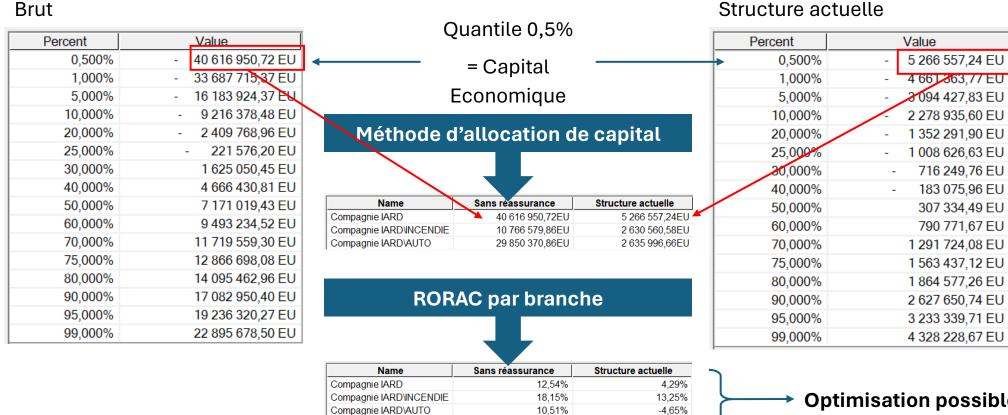
La réassurance actuelle permet de réduire de manière significative la volatilité du résultat.

En contrepartie, le coût de la réassurance, de 4 867 k€ en moyenne, est très important.

Distribution du <u>résultat technique Incendie</u> avec et sans réassurance (50 000 simulations)



Sur la branche Incendie, le coût de la réassurance est en moyenne de 1 605 k€ environ.


Distribution du <u>résultat technique Auto</u> avec et sans réassurance (50 000 simulations)

Sur la branche Auto, le coût de la réassurance est en moyenne de 3 260 k€ environ.

Quantiles de la distribution du <u>résultat technique Global</u> avec et sans réassurance (50 000 simulations)

Conception et modélisation de plusieurs stratégies de réassurance alternatives

Name	Sans réassurance	Structure actuelle
Compagnie IARD	12,54%	4,29%
Compagnie IARD\INCENDIE	18,15%	13,25%
Compagnie IARD\AUTO	10,51%	-4,65%

La protection offerte par la réassurance Incendie semble bien dimensionnée et son coût en termes de RORAC est limité

L'économie de capital réalisée grâce à la réassurance Auto est très coûteuse en termes de résultat et entraine un RORAC négatif

Comment optimiser la couverture sur la branche Automobile?

Conception et modélisation de plusieurs stratégies de réassurance alternatives

Analyse des statistiques des traités obtenues grâce aux simulations :

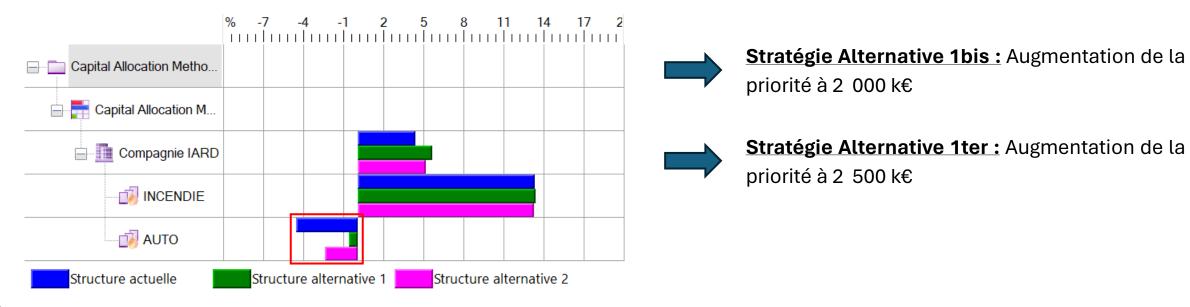
Structure ac					
	Mean Reinsurer's Loss	St Dev of Reinsurer's Loss	Entry Prob	Exit Prob	Technical Rate-on-Line
QP Incendie	6 786 790,60EU	1 186 248,96EU	100.0000%	0.0000%	n/a
XS Incendie	1 305 136,66EU	2 189 904,64EU	61.1420%	0.0000%	6.6083%
QP Auto	24 473 988,52EU	8 536 903,52EU	100.0000%	0.0000%	n/a
XS Auto	820 160,77EU	1 515 875,12EU	56.5160%	0.0000%	1.6569%
XS Cat	13 811,52EU	98 203,44EU	5.2520%	0.0000%	0.0138%

Les traités XS travaillent très (trop ?) souvent

Augmentation de la priorité ?

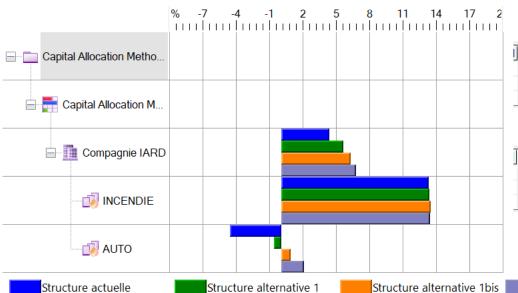
Mise en place d'une Franchise Aggregate Annuelle ? Stratégie Alternative 1 : Augmentation de la priorité à 1 500 k€ (vs. 500 k€ actuellement)

Stratégie Alternative 2 : Mise en place d'une franchise aggregate annuelle de 1 000 k€


Le ROL technique est inférieur au ROL « de marché » demandé par les réassureurs.

Nécessité de tarifer les traités en intégrant des hypothèses sur la marge des réassureurs!

Conception et modélisation de plusieurs stratégies de réassurance alternatives


L'augmentation de la priorité à 1 500 k€ du traité XS Auto (stratégie alternative 1) semble plus efficace que la mise en place d'une franchise aggregate annuelle de 1 000 k€ (stratégie 2) pour l'amélioration du RORAC mais reste insuffisante :

Sélection de la stratégie de couverture des portefeuilles

L'augmentation plus importante de la priorité du traité XS Auto permet d'améliorer le RORAC :

Capital économique

Name	Structure actuelle	Structure alternative 1	Structure alternative 1bis	Structure alternative 1ter
Compagnie IARD	5 266 557,24EU	5 835 713,38EU	6 025 192,23EU	6 331 601,40EU
Compagnie IARD\INCENDIE	2 630 560,58EU	2 614 475,71EU	2 589 129,45EU	2 609 228,41EU
Compagnie IARD\AUTO	2 635 996,66EU	3 221 237,67EU	3 436 062,78EU	3 722 372,99EU

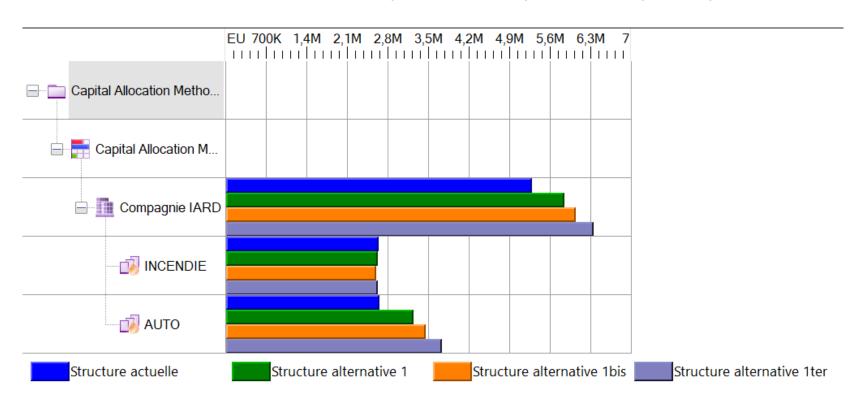
RORAC

Structure alternative 1ter

Name	Structure actuelle	Structure alternative 1	Structure alternative 1bis	Structure alternative 1ter
Compagnie IARD	4,29%	5,59%	6,25%	6,71%
Compagnie IARD\INCENDIE	13,25%	13,33%	13,46%	13,36%
Compagnie IARD\AUTO	-4,65%	-0,69%	0,81%	2,05%

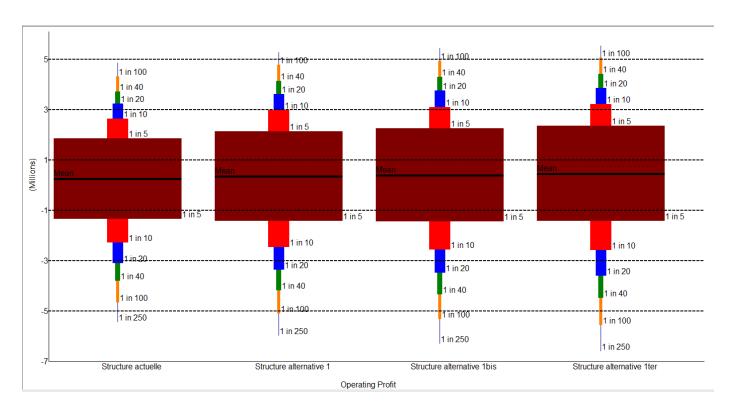
Sélection de la stratégie de couverture des portefeuilles

Les traités XS Auto sont moins travaillants, ce qui permet d'en réduire le coût et d'améliorer le résultat technique net :

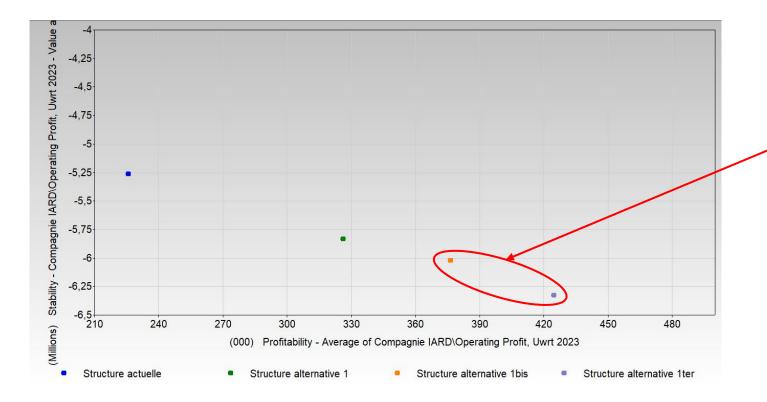

Structure alternative 1bis								
	Mean Reinsurer's Loss	St Dev of Reinsurer's Loss	Entry Prob	Exit Prob	Technical Rate-on-Line			
QP Incendie	6 786 790,60EU	1 186 248,96EU	100.0000%	0.0000%	n/a			
XS Incendie	1 305 136,66EU	2 189 904,64EU	61.1420%	0.0000%	6.6083%			
XS Cat	13 811,52EU	98 203,44EU	5.2520%	0.0000%	0.0138%			
QP Auto	24 473 988,52EU	8 536 903,52EU	100.0000%	0.0000%	n/a			
XS Auto	260 257,89EU	939 997,44EU	14.8180%	0.0000%	0.5422%			

Structure alternative 1ter								
	Mean Reinsurer's Loss	St Dev of Reinsurer's Loss	Entry Prob	Exit Prob	Technical Rate-on-Line			
QP Incendie	6 786 790,60EU	1 186 248,96EU	100.0000%	0.0000%	n/a			
XS Incendie	1 305 136,66EU	2 189 904,64EU	61.1420%	0.0000%	6.6083%			
XS Cat	13 811,52EU	98 203,44EU	5.2520%	0.0000%	0.0138%			
QP Auto	24 473 988,52EU	8 536 903,52EU	100.0000%	0.0000%	n/a			
XS Auto	192 810,99EU	810 816,59EU	10.7140%	0.0000%	0.4059%			

Sélection de la stratégie de couverture des portefeuilles


En contrepartie, les traités sont moins couvrants et le Capital Economique est donc plus important :

Sélection de la stratégie de couverture des portefeuilles


Représentation Box-Plot des de la distribution du résultat technique dans les différentes stratégies :

Sélection de la stratégie de couverture des portefeuilles

Efficience des différentes stratégies testées :

Les stratégies 1bis et 1ter permettent de remplir l'objectif fixé.

Le choix de la stratégie retenue va donc dépendre de l'appétence de la compagnie :

- Est-elle prête à prendre un peu plus de risque pour gagner en profitabilité ?
- Jusqu'à quel niveau?

Plan de l'atelier

- A. Introduction aux modèles DFA
 - Les limites des modèles déterministes
 - Les modèles DFA
 - Applications possibles des modèles DFA en assurance Non-vie
- B. Focus sur l'application des modèles DFA pour l'optimisation de la réassurance
 - Le durcissement du marché de la réassurance
 - L'intérêt des modèles DFA pour l'optimisation de la réassurance
- C. Exemple applicatif de mise en place d'un modèle DFA pour un organisme fictif simplifié
 - Modélisation et analyse des portefeuilles de risques non-Cat. et Cat.
 - Production d'indicateurs financiers et économiques par la réalisation de plusieurs milliers de simulation
 - Conception et modélisation de plusieurs stratégies de réassurance
 - Sélection de la stratégie de couverture des portefeuilles par optimisation sous contrainte

D. Conclusion

D. Conclusion

Les modèles d'Analyse Financière Dynamique (DFA) représentent une avancée significative dans le domaine de la gestion des risques pour les compagnies d'assurance non-vie. Leur capacité à intégrer les divers facteurs de risque et à simuler une multitude de scénarios offre aux assureurs une compréhension plus approfondie et nuancée des risques et des implications financières de leurs activités.

Grâce à l'approche dynamique et stochastique des modèles DFA, les compagnies d'assurance peuvent mieux anticiper les événements extrêmes et les tendances économiques fluctuantes. Cela permet de renforcer la résilience financière face aux incertitudes du marché.

L'intégration des modèles DFA dans le processus décisionnel stratégique aide les assureurs à identifier les sources potentielles de vulnérabilité et à mettre en œuvre des mesures de gestion des risques plus efficaces. En simulant les impacts combinés des risques d'assurance, des risques financiers et des décisions de gestion, les modèles DFA offrent une vision globale qui est essentielle pour maintenir la solvabilité et la rentabilité à long terme.

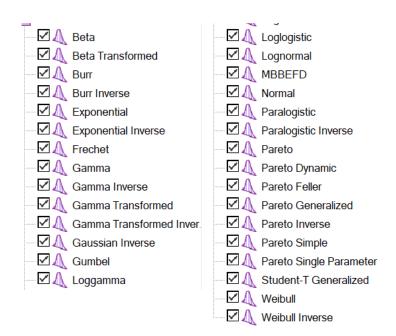
Les modèles DFA apportent ainsi une forte valeur ajoutée en permettant une gestion proactive et intégrée des risques, adaptée à la complexité et à la volatilité croissantes du secteur de l'assurance non-vie. Ils constituent un outil indispensable pour les compagnies d'assurance dans un environnement en constante évolution, en assurant leur pérennité et leur compétitivité.

Merci pour votre attention!

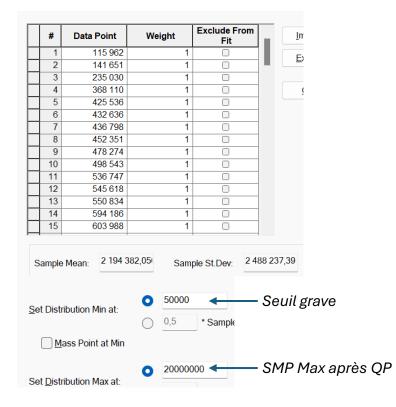
Avez-vous des questions?

Benjamin AUBIN
benjamin.aubin@actuelia.fr
07 63 58 97 93

Rosa HADDAK
rhaddak@ultirisk.com
+39 324 568 7588



Annexes



Modélisation de la sévérité de la sinistralité grave – Exemple sur la branche Incendie

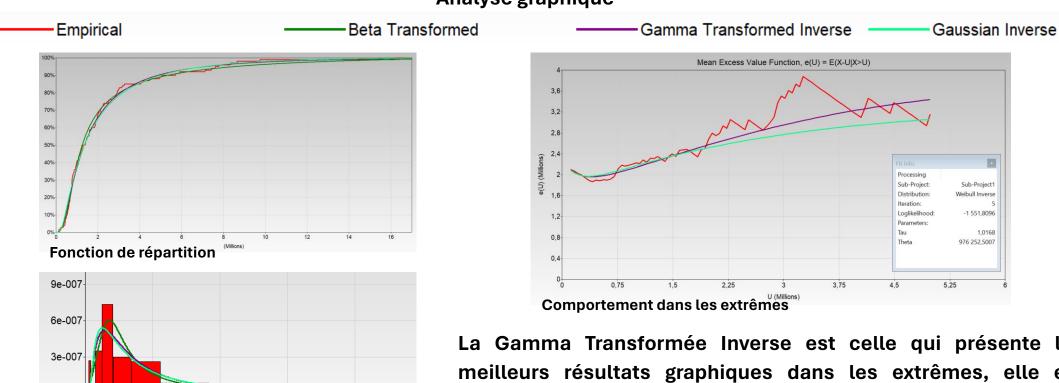
Lois testées

Liste des graves

Modélisation de la sévérité de la sinistralité grave – Exemple sur la branche Incendie

Analyse des résultats des distributions convergentes

Distribution		Best	Fit Criteria		
Distribution	Akaike	Least Squares	Kolmogorov	Kuiper	Anderson
 Gaussian Inverse	-1 552,0730	0,0725	0,0502	0,0963	0,5018
 Gamma Transformed Inverse	-1 551,8118	0,0590	0,0529	0,0948	0,3562
 Beta Transformed	-1 551,4057	0,0497	0,0561	0,1058	0,2272
 Gamma Inverse	-1 553,4594	0,0677	0,0567	0,1062	1,0164
 Pareto Feller	-1 551,2282	0,0608	0,0608	0,0986	0,2629
Loggamma	n/a	0,0762	0,0612	0,1047	0,2417
 Burr	-1 550,4768	0,0485	0,0613	0,1041	0,2451
 Durr Invarea	1 EEN 0700	0 0EEE	U UE34	0 0060	U 3433


D'après le test de Kolmogorov, les meilleures distributions seraient la Gaussienne Inverse, la Gamma Transformée Inverse et la Beta Transformée.

L'analyse graphique permet d'affiner le choix.

Modélisation de la sévérité de la sinistralité grave – Exemple sur la branche Incendie

Analyse graphique

Fonction de densité

La Gamma Transformée Inverse est celle qui présente les meilleurs résultats graphiques dans les extrêmes, elle est retenue. 47