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When winter comes what happens?

It is cold. It is wet.
It is so snowy that the RER does
not work.

5/71



So what do you do before it arrives?

Buy a warm coat Ask for an umbrella for Christmas
Ensure a large stock of hot
chocolate powder
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What makes you think businesses do not cope with the same
conditions?

Who?

Energy producers and
distributors

Farmers and agro suppliers

Construction

Big industrials

Suffering from what?

High demand of energy leading
to price explosion

Cold waves, frost and hail
devastating crops

Winter storms destroying sites

Supply disruption

... and it is estimated that climate change could decrease up to 10% of
total economic value worldwide by 2050 [26].
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Introduction to weather derivatives

Insurance or derivative contracts defined by

Annual Index I aggregate of...

...an underlying meteorological parameter: e.g. daily T

and leads to a payoff according to a payoff function P

K

L

−L
Figure: Swap
P(I ) = max(−L,min(L, α ∗ (I − K)))

K

L

Figure: Call

P(I ) = min(L, α ∗ (I − K)+)

K

L

Figure: Put

P(I ) = min(L, α ∗ (K − I )+)

Figure: Payoff functions for three weather derivatives. Here I corresponds to the weather index, K to the strike, α to the notional or tick
in ($ per weather index unit) and L to the limit of payoff.
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Introduction to weather derivatives

Peril Parameter Weather index Source

Heat wave, cold wave,
frost

Temperature
HDD, CDD, CAT,
minimum temperature,
maximum temperature

Weather station,
satellite data

Drought,
excess of rainfall

Rainfall
Cumulative rainfall,
number of rainy days

Weather station,
satellite data

Lack of snow Snowfall Cumulative snowfall Weather station
Lack of wind energy
production

Windspeed Wind power production
Weather station,
satellite data

Lack of solar energy
production

Solar radiation Solar power production Satellite data

Cyclone
Cyclone intensity
or track

Cyclone intensity
or track

Public agency

Earthquake Earthquake intensity
Seismic intensity,
magnitude

Public agency

Drought, wildfire Vegetation indices
NDVI, soil moisture,
burned index

Satellite data

Table: Summary of the different weather parameters and indices defining a weather derivative contract
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Market characterisation

A recent market

1996 First over-the-counter (OTC) exchange

1999 CME launches open market

2006 A $45 billion worth market (95% temperature contracts)

2008 Slowdown and birth of quanto products

2020 Rebirth of interest and new actors

Characteristics of the current market

CME unique open market with 72 contracts

Considerably limited volumes with several days without transactions

Mostly OTC exchanges (estimated 69% in 2004) with
non-standardized products

Involving specialized brokers and main reinsurers

=⇒ No market data.
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Available data
Weather Data characteristic

A diversity of meteorological parameters (temperature, rain, wind)
and granularity (spacial and time).

Both satellite and weather station data.

Mainly provided by private companies who ensure data accessibility
and quality check.

Data for our study

Model (M) Model (ETM) Model (ETM)

Data
Average daily
temperature

Average daily tem-
perature

Day ahead prices

Time 01/01/1980 to
31/12/2020

5/01/2015 to
31/12/2018

5/01/2015 to
31/12/2018

Location 8 major European
cities

Paris-Charles
de Gaulle
Milano-Linate

France
North Italy

Source Speedwell Speedwell
ENTSO-E
Gestore Mercati
Energetici
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How do we evaluate the risk related to weather derivatives?
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What are temperature derivatives?

Contract structure

The weather parameter is the average daily temperature Tt

different indices related to average temperature

HDD :=
t2∑

t=t1

max(0,Tb − Tt), CAT :=
t2∑

t=t1

Tt .

and a deterministic payoff function fT

fT (HDD) := min((HDD − HDDstrike)
+, L) (1)
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How to price temperature derivatives?
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Our stochastic volatility model

Our stochastic volatility model
Tt = s(t) + T̃t ,

dT̃t = −κT̃tdt +
√
ζt(ρdWt +

√
1− ρ2dZt),

dζt = −K (ζt − σ2(t))dt + η
√
ζtdWt ,

(M)

where (Tt)t≥0 temperature,

(T̃t)t≥0 deseasonalized and detrended temperature,
(ζt)t≥0 volatility,
W ,Z are independent Brownian motions, κ, η,K > 0, ρ ∈ [−1, 1],
s and σ2 two deterministic functions in (3)
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Our stochastic volatility model

Our stochastic volatility model
Tt = s(t) + T̃t ,

dT̃t = −κT̃tdt +
√
ζt(ρdWt +

√
1− ρ2dZt),

dζt = −K (ζt − σ2(t))dt + η
√
ζtdWt ,

(M)

Characteristics

Integrates a trend and seasonal deterministic component s.

Integrates an autoregressive component driven by κ.

Integrates a volatility (ζt)t≥0 following a time-dependent
Cox-Ingersoll-Ross (CIR) process [14].
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Our stochastic volatility model

Our stochastic volatility model
Tt = s(t) + T̃t ,

dT̃t = −κT̃tdt +
√
ζt(ρdWt +

√
1− ρ2dZt),

dζt = −K (ζt − σ2(t))dt + η
√
ζtdWt ,

(M)

Advantages

Brings larger flexibility on the volatility process.

Time-continuous model =⇒ can be coupled with a model for energy
or commodities.

Affine model =⇒ efficient pricing methods based on Fourier
techniques.

Generalizes the Ornstein-Urhlenbeck model.
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Daily temperature models

Ornstein–Uhlenbeck model [3]{
Tt = s(t) + T̃t ,

T̃t = −κT̃tdt + σ(t)dWt ,
(2)

where (Tt)t≥0 temperature,

(T̃t)t≥0 deseasonalized and detrended temperature,
W Brownian motion, κ > 0,
s and σ2 two deterministic functions and ξk = 2πk

365

{
s(t) = α0 + β0t +

∑Ks

k=1 αk sin(ξkt) +
∑Ks

k=1 βk cos(ξkt),

σ2(t) = γ0 +
∑Kσ2

k=1 γk sin(ξkt) +
∑Kσ2

k=1 δk cos(ξkt)
(3)
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Limits of the Ornstein-Uhlenbeck model

Delete any potential long memory effects.

Deviation from normal hypotheses: skewness, tail heaviness and
volatility clustering pattern

Explored alternative models

Fractional Brownian mo-
tions [10]

Ĥ ≈ 0.5

Higher than one autoregres-
sive terms

Autoregressive coefficients
small & unstable

GARCH models Same noise for temperature
& volatility
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Quantile quantile plot for model comparison

Figure: Quantile quantile plots for observed and 9 simulated noises for Stockholm, Paris and Rome for the Ornstein-Uhlenbeck model.

Figure: Quantile quantile plots for observed and 9 simulated noises for Stockholm, Paris and Rome for Model (M).
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Estimation challenges

Three major estimation challenges

Estimate the parameters of model
(M)

CLSE

Compute the instantaneous
volatility process (ζt)t≥0

ζ approximated by observed
volatility ζ̂Q

Evaluate robustness of the estima-
tion

Robust estimation for T ,
less stable for ζ
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Estimation Challenges

Challenge: Apply Conditional Least Squares Estimation (CLSE) to
estimate parameters of Model (M) [9].

N−1∑
i=0

(
T(i+1)∆ − E[T(i+1)∆|Ti∆, ζi∆]

)2
+
(
ζ(i+1)∆ − E[ζ(i+1)∆|ζi∆]

)2

Remark

Overbeck and Ryden [24] and Bolyog and Pap [9] proved
convergence of the CLS estimators for the CIRs and Heston models

Klimko and Nelson [21] show CLS estimator speed of convergence
close to O(N−1/2)

We show strong convergence of CLS estimators for the
time-dependent CIR processes
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Estimation Challenges

Challenge: Apply Conditional Least Squares Estimation (CLSE) to
estimate parameters of Model (M) [9].
For s and κ,

min
κ, α, β

N−1∑
i=0

(
T(i+1)∆ − E[T(i+1)∆|Ti∆]

)2
, (4)

is given, if λ̂2 ∈ (0, 1), by

κ̂ = − 1
∆ ln λ̂2

α̂0 =
λ̂0

1−λ̂2
− λ̂1∆

(1−λ̂2)2

β̂0 =
λ̂1

1−λ̂2

α̂1 =
λ̂3(cos(ξ∆)−e−κ̂∆)+λ̂4 sin(ξ∆)

(cos(ξ∆)−e−κ̂∆)2+sin2(ξ∆)

β̂1 =
λ̂4(cos(ξ∆)−e−κ̂∆)−λ̂3 sin(ξ∆)

(cos(ξ∆)−e−κ̂∆)2+sin2(ξ∆)
,

where Xi∆ = (1, i∆,Ti∆, sin(ξi∆), cos(ξi∆))T ∈ R5 for i ∈ N and

λ̂ =

N−1∑
i=0

Xi∆X
T
i∆

−1N−1∑
i=0

Xi∆T(i+1)∆

 .
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Estimation challenges

Proof.

From Model (M), we have E[Tt+∆|Ft ] = Tte
−κ∆+ s(t+∆)− s(t)e−κ∆.

From the trigonometric identities we get:

s(t + ∆) − e−κ∆s(t) = λ0 + λ1t + λ3 sin(ξt) + λ4 cos(ξt),

λ0 = α0(1 − e−κ∆) + β0∆

λ1 = β0(1 − e−κ∆)

λ2 = e−κ∆

λ3 = α1(cos(ξ∆) − e−κ∆) − β1 sin(ξ∆)

λ4 = α1 sin(ξ∆) + β1(cos(ξ∆) − e−κ∆),

With Xi∆ = (1, i∆,Ti∆, sin(ξi∆), cos(ξi∆))T and λ2 set to have
E[T(i+1)∆|Ft ] = λTXi∆. The minimization problem becomes

min
λ ∈ R5

N−1∑
i=0

(
T(i+1)∆ − λ

TXi∆

)2
.
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Estimation challenges

Challenge: Compute the instantaneous volatility process (ζt)t≥0.

Work with realized volatilities (ζ̂iQ∆)i∈[0,I ] [2]

ζ̂iQ∆ :=
1

Q

Q∑
j=1

2κ̂

1− e−2κ̂∆

(
T̃(iQ+j)∆ − e−κ̂∆T̃(iQ+j−1)∆

)2
(5)

ζ̂iQ∆ realized volatility where i ∈ {0, . . . , ⌊N/Q⌋ − 1}

Remark

If ζt were frozen for t ∈ [iQ∆, (i + 1)Q∆], ζ̂iQ∆ would be an unbiased
estimator, i.e. E[ζ̂iQ∆|FiQ∆] = ζiQ∆.
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Estimation challenges

Challenge: Evaluate robustness of the estimation.

Analyse performance of the estimators applied to simulated time series:
T(i+1)∆ = s((i + 1)∆) + e−κ∆(Ti∆ − s(i∆)) +

√
1 − e−2κ∆

2κ

ζi∆ + ζ(i+1)∆

2
Zi

ζ(i+1)∆ = ϕ(ζi∆,∆,
√
∆Yi∆).

For T : discretize the integral of temperature dynamics

For ζ: generalize Ninomiya-Victoir scheme for Cox-Ingersoll-Ross
(CIR) processes [1]

ϕ(ζi∆,∆,
√

∆Yi∆) = e
− K∆

2


√√√√

(Kσ2((i + 1/2)∆) −
η2

4
)ϕK (

∆

2
) + ζi∆e

− K∆
2 +

η

2

√
∆Yi∆


2

+ (Kσ2((i + 1/2)∆) −
η2

4
)ϕK (

∆

2
)
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Estimation challenges

Challenge: Evaluate robustness of the estimation.

For s and κ,

Figure: Estimation of the trend and seasonal function s on both real temperature T (blue) and simulated temperature Ts (light blue) for
Stockholm (left) and Paris (right) and Q = 10.

City Stockholm Paris Amsterdam Berlin Brussels London Rome Madrid

κ 0.192 0.230 0.228 0.203 0.195 0.260 0.228 0.221
κ̂ 0.192 0.235 0.220 0.200 0.192 0.270 0.224 0.232

Table: Estimation of temperature autoregressive parameter from the simulated temperature path.
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Summary

Model (M) answers to the limits of the Ornstein-Uhlenbeck model
with a more conservative approach.

CLSE enables to compute its parameters.

Realized volatility ζ is approximated by an observed volatility ζ̂
which depends on time-window Q.

Estimation is robust for parameters of s, κ and σ.

Estimation of K and η2 less stable. Chose a balanced Q =⇒ Need
to understand sensitivity to these parameters.
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Pricing temperature derivatives

Prices under classic risk-neutral pricing theory correspond to:

EQ

(
D(t0, t2)min((HDD − HDDstrike)

+, L)
)

where Q is the risk-neutral probability and D(t0, t2) is a discount factor
between t0 and t2.

However, temperature is not an asset traded on markets
=⇒ Risk neutral theory cannot be applied.
=⇒ We work on the historical probability world and analyse the payoff
distribution.
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Pricing temperature derivatives

Monte Carlo simulations
T(i+1)∆ = s((i + 1)∆) + e−κ∆(Ti∆ − s(i∆)) +

√√√√ 1 − e−2κ∆

2κ

ζi∆ + ζ(i+1)∆

2
Zi

ζ(i+1)∆ = ϕ(ζi∆,∆,
√

∆Yi ),

where (Yi ,Zi )i≥0 ∼ N (0, I ) iid, ψK (t) =
1−e−Kt

K
and

ϕ(ζi∆,∆,
√

∆Yi ) = e
− K∆

2


√√√√(Kσ2((i + 1/2)∆) −

η2

4

)
ψK

(
∆

2

)
+ ζi∆e

− K∆
2 +

η

2

√
∆Yi


2

+

Kσ2((i + 1/2)∆) −
η2

4

ψK

(
∆

2

)

Fourier Transform Approach

Computation of the characteristic function of Model (M).

Fast Fourier Transform applied to Gil-Pelaez inversion formula [19].

Combined with control variates method.
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Monte-Carlo Approach

Mean with 95% confidence interval Conditional Value at Risk at 95%

Figure: Different metrics of the payment distribution for 50, 000 Monte Carlo simulations, Paris, a cumulation period of a month, a
forecast 30 days ahead and HDDstrike corresponding to a 90% quantile of the monthly HDD. Monte Carlo simulations are performed for
both Model (M) and the Ornstein–Uhlenbeck model (2).
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Fast Fourier Transform Approach

Characteristic Function [12]

Proposition

Let 0 ≤ t ≤ t′. Let (T̃ , ζ) be the solution of (M) with ρ = 0. The characteristic function of

(T̃t′ , ζt′ ) given Ft is, for u1, u2, u3 ∈ R,

E
[
exp

(
i [u1T̃t′ + u2ζt′ + u3

∫ t′

t

T̃sds]

)
|Ft

]
= exp(a0(t, t

′)+a1(t
′−t)T̃t+a2(t

′−t)ζt), (6)

where a2 is the unique solution on R+ of the time inhomogeneous autonomous Riccati equation

a′2 = −Ka2 −
1

2

[
u1 exp(−κt) + u3

1 − exp(−κt)

κ

]2
+

1

2
η
2a22, a2(0) = iu2,

a1(t) = iu1 exp(−κt) + iu3
1−exp(−κt)

κ and a0(t, t
′) = K

∫ t′
t

σ2(s)a2(s)ds.

Besides, the real part of a2(t) remains nonpositive for all t ≥ 0.
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Fast Fourier Transform Approach

Characteristic Function [12]
Practically speaking, we freeze on each interval [tk , tk+1] the value of the
time inhomogenous term t = tk+tk+1

2 . For k < l ,

a2(tk+1) = Ψk +
2
√
Dk (Ψk − a2(tk ))(

η2(Ψk − a2(tk )) − 2
√
Dk

)
exp(−

√
Dkδ) − η2(Ψk − a2(tk ))

a1(tk , tl ) = iu1 exp(−κ(tl − tk )) + iu3
1 − exp(−κ(tl − tk ))

κ

a0(tk , tl ) ≈ K

l−1∑
j=k

1

2
[σ2(tj )a2(tl − tj ) + σ

2(tj+1)a2(tl − tj+1)]δ.

(6)

where

Dk = K 2 + η
2

u1 exp

(
−κ

tk + tk+1

2

)
+ u3

1 − exp
(
−κ

tk+tk+1
2

)
κ

2

, Ψk =
K +

√
Dk

η2
.
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Fast Fourier Transform Approach

Control variates method for Monte-Carlo
Let consider

(HDD − HDDstrike)
+︸ ︷︷ ︸

Targeted estimator

−λ ((t2 − t1 + 1)Tb − HDDstrike − CAT )+︸ ︷︷ ︸
Control variable

Expectation easily computed thanks to
characteristic function (6) and FFT

Optimal for

λ∗ =
Cov((HDD − HDDstrike)

+, ((t2 − t1 + 1)Tb − HDDstrike − CAT )+)

Var(((t2 − t1 + 1)Tb − HDDstrike − CAT )+)
.
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Fast Fourier Transform Approach
Control variates method for Monte-Carlo

Month 1 2 3 4 5 6 7 8 9 10 11 12

Corr 1.00 1.00 1.00 1.00 0.94 0.66 0.38 0.33 0.66 0.97 1.00 1.00
VR 2.41e5 5.24e4 4.73e3 2.22e2 5.08 1.19 1.01 1.01 1.20 9.84 3.92e2 1.40e4

Table: Correlation and variance reduction (VR) brought by the control variates method for options computed during each month of 2019.

Variance ratio corresponds to the variance of (
∑t2

t=t1
(Tb − Tt )

+ − HDDstrike )
+ divided by the variance of the control variable.

Figure: Expected payoffs forecasted 30 days ahead for a HDD derivative on each month of 2019 (blue) and for the control variable (red).
We performed 50, 000 Monte Carlo simulations.
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Extensions of the pricing approach

Comparison with business pricing practices: index modeling [20] [25]

Coherence between the pricing methodologies.

Daily modeling offers more precision and stability.

Perform parameter sensitivity analysis:

Important sensitivity to κ. Price shrinkage when κ increases.

Slight sensitivity to η2 and K . Marginal impact in winter months.

Sensitivity to t1 − t0. The more ahead we forecast the less
information we have.

Important sensitivity to moneyness of the product.
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Summary

Develop a stochastic volatility daily temperature model.

Overpass estimation challenges thanks to CLSE and volatility
approximation.

Implement two pricing methodologies: Monte-Carlo and FFT.

Boost Monte-Carlo simulations thanks to control variates.
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What are quanto derivatives?

Contract structure

A weather index corresponds to the aggregate of an underlying
meteorological parameter Tt

A price index corresponds to daily average electricity spot price
St = eXt

and a payoff depending on the product of two payoff functions fS
and fT

Payoff :=
t2∑

t=t1

fS(St)× fT (Tt) (7)

Main interest: hedge against both

volumetric risk: wind [27], solar [5], temperature [11] [6] [15].

price risk: natural gas [15] [6], electricity [4].
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How to price quanto derivatives?
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A combined model for (Xt ,Tt)t≥0

A coupled model for electricity spot price (Xt)t≥0 and average
temperature (Tt)t≥0{

d(Xt − µX (t)) = −κX (Xt − µX (t)) + λσTdW
T
t + dLXt

d(Tt − µT (t)) = −κT (Tt − µT (t)) + σTdW
T
t

(ETM)

where

The deterministic function µ : R+ → R represents the trend and
seasonality component,

κ > 0 corresponds to the mean-reverting (or autoregressive)
behaviour,

W T Brownian notion, LX NIG Lévy noise, independent,

λ ∈ R dependence parameter.
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A combined model for (Xt ,Tt)t≥0

A coupled model for electricity spot price (Xt)t≥0 and average
temperature (Tt)t≥0{

d(Xt − µX (t)) = −κX (Xt − µX (t)) + λσTdW
T
t + dLXt

d(Tt − µT (t)) = −κT (Tt − µT (t)) + σTdW
T
t

(ETM)

Advantages

Convincing marginals

Integrates dependence structure

Maintains autoregressive mean-reverting time-continuous dynamics

⇒ Ease to estimate
⇒ Capacity to compute average payoff through FFT and explicit formulas
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Marginal model for log spot electricity price (Xt)t≥0

A model inspired by Benth and Benth [7]

d(Xt − µX (t)) = −κX (Xt − µX (t)) + λσTdW
T
t + dLXt (8)

where

The deterministic seasonality function µX

µX (t) = βX
0 t + αX

1 sin(ξt) + βX
1 cos(ξt) + αX ,DoW

DoW (t)

where ξ = 2π
365 and DoW (t) = ⌊ t

∆⌋ mod p = 7

κX > 0 corresponds to the mean-reverting parameter,

LX is a Normal Inverse Gaussian distribution of parameters
(αX , βX , δX ,mX ) centered.
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Marginal model for log spot electricity price (Xt)t≥0

First energy commodity models
First price energy commodity models are mean-reverting diffusion models
from Schwartz [18]: {

Xt = µ(t) + X̃t

X̃t = −κX̃tdt + σdWt

(9)

where µ(·) deterministic function and W to a Brownian noise.

Model (9) is applied to electricity prices by Lucia and Schwartz [22]
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Marginal model for log spot electricity price (Xt)t≥0

Figure: Quantile quantile plots for residuals compared with a theoretical quantiles of a normal distribution for French energy (left) and
North Italian Energy (right).
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Marginal model for log spot electricity price (Xt)t≥0

Explored alternative models

Mean-reverting jump-diffusion
models [16] [13] [17]

How to filter jumps?

Multi-factor mean-reverting
models with Gaussian
noise [22]

Still Brownian noises

Multi-factor mean-reverting
models with Levy noise [23]

How to filter factors and
then estimate convinc-
ingly?

Finally we keep a mean-reverting model with NIG noises as in Benth and
Benth [7].
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Marginal model for log spot electricity price (Xt)t≥0

Figure: Quantile quantile plots for residuals compared with a theoretical quantiles of a normal inverse gaussian distribution for French
energy (left) and North Italian Energy (right).
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Marginal model for average temperature (Tt)t≥0

A well established model developed by Benth et al. [8]

d(Tt − µT (t)) = −κT (Tt − µT (t)) + σTdW
T
t (10)

where

The deterministic trend and seasonality function µT :

µT (t) = αT
0 + βT

0 t + αT
1 sin(ξt) + βT

1 cos(ξt), where ξ =
2π

365
.

κT corresponds to the mean-reverting parameter,

W T is a Brownian motion and σT > 0 to the standard deviation of
the noise.
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Marginal model for average temperature (Tt)t≥0

Figure: Quantile quantile plots for residuals compared with a theoretical quantiles of a normal distribution for Paris temperatures (left) and
Milan temperatures (right).
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Estimation procedure

Estimation in 5 steps

1. Deterministic terms κ and
µ(·)

CLSE

2. Parameters of (Tt)t≥0 MLE
3. Dependence parameter λ Observed covariance
4. NIG parameters of LX CLSE on characteristic

function
5. Goodness of fit of

Model (ETM)
χ2-test goodness of fit
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1. Estimation of κ and µ(·)

Following Klimko and Nelson [21], we estimate κ and µ(·) through
Conditional Least Square (CLS)

min
κ, α, β

N−1∑
i=0

(
X(i+1)∆ − E[X(i+1)∆|Xi∆]

)2
, (11)

is given, if λ̂2 ∈ (0, 1), by

κ̂X = − ln η̂2

β̂X
0 =

η̂1
1−η̂2

α̂X
1 =

η̂3(cos(ξ∆)−e−κ̂X∆)+η̂4 sin(ξ∆)

(cos(ξ∆)−e−κ̂X∆)2+sin2(ξ∆)

β̂X
1 =

η̂4(cos(ξ∆)−e−κ̂X∆)−η̂3 sin(ξ∆)

(cos(ξ∆)−e−κ̂X∆)2+sin2(ξ∆)

α̂X,DoW
j = 1

1−e−7κ̂X∆

∑6
k=0(η̂

DoW
j+k − β̂0)e

−(6−k)κ̂X∆,

where

η̂ =

N−1∑
i=0

Ξi∆Ξ
⊤
i∆

−1N−1∑
i=0

Ξi∆X(i+1)∆

 ,

with Ξi∆ = (i∆,Xi∆, sin(ξi∆), cos(ξi∆), (1{DoW (i∆)=j})0≤j≤6) ∈ R4 × {0, 1}7.
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1. Estimation of κ and µ(·)

Figure: Fitted deterministic curve µX (·) (left) and µT (·) (right) for France (first row) and Italy (second row).

52/71



2. Estimation of the parameter of (Tt)t≥0

Let consider the integral of dynamics (Tt)t≥0 from Model (ETM), ∆ > 0

and T̃t = Tt − µT (t):

T̃t+∆ = e−κT∆T̃t + σT

∫ t+∆

t

e−κT (t−u)dW T
u︸ ︷︷ ︸

∼N
(
mT

√
1−e−2κT∆

2κT
,σ2

T
1−e−2κT∆

2κT

)
=⇒ Easy to estimate through Maximum Likelihood Estimation (MLE).

Results

Market m̂T σ̂2
T

France 10−15 2.413
North Italy 10−16 1.846

Table: Parameter estimation through the maximum likelihood estimation for dynamic of temperature normally distributed for Paris and
Milan temperature.
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3. Estimation of the dependence parameter of λ

Estimation of λ
From Model (ETM),

λ̂ =
κ̂X + κ̂T

σ̂2
T (1− e−(κ̂X+κ̂T )∆)

Ĉov

Results

Market λ̂

France −0.007
North Italy −0.002

Table: Estimated λ of Model (ETM) for France and North Italy.
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4. Estimation of the parameter of (Xt)t≥0

We apply CLS estimation applied to the (conditional) characteristic
function:

∑
u

N−1∑
t=0

∣∣∣e iu(X̃t+∆−e−κX∆X̃t ) − e
− 1

2
λ2σ2T

1−e−2κX∆

2κX
u2

φ(u; ∆)
∣∣∣2, (12)

where φ the characteristic function of
( ∫ t+∆

t
e−κX (t+∆−v)dLXv

)
φ(u; ∆) = exp

(
iumX 1 − e−κX∆

κX

+ δγX∆ − δ
X
∫ t+∆

t

√
(αX )2 − (β + iue−κX (t+∆−v))2dv

)
(13)

Remark
We compare CLS estimation through the characteristic function with
alternative estimation through MLE and EM algorithm applied to an

approximation of
( ∫ t+∆

t
e−κX (t+∆−v)dLXv

)
. All approaches show similar

results.
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5. Goodness of fit

p − value = 0.219 p − value = 0.892

p − value = 0.616 p − value = 0.124

Figure: From top left to bottom right, χ2 test performed on the distributions of real (blue) and simulated (green - based on 1, 000, 000
simulations) ranked residuals for 4 and 25 categories for French data.
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Summary

CLS method is used to fit deterministic terms and NIG

MLE is used to fit temperature

Marginal models follow literature proposals and fit well 1D
time-series

Model (ETM) convincingly fits observations

9.43% and 4.34% of the standard deviation of the random term of
the log energy spot price is explained by the temperature component
for France and North Italy respectively
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Characterisation of quanto derivatives

Following Cucu and al [15] and business practices, we define the quanto
payoff:

Payoff :=
t2∑

t=t1

fS(St)× fT (Tt) (14)

In particular, for

Futures Swaps
Single-sided
options

Double-sided
options

fS(St) St (St − S̄) St (St − S̄)+

fT (Tt) Tt (T̄ − Tt) (T̄ − Tt)
+ (T̄ − Tt)

+

Application: T̄ = 18◦C (definition of HDD) and S̄ = 50 EUR/MWh.
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Pricing quanto derivatives

Again, we work under historical probability and analyse the payoff
distribution.

Explicit or semi-explicit formulas deriving from the resolution of:

EP

(
t2∑

t=t1

fS(St)× fT (Tt)

)

Monte Carlo simulations

Xt+∆ = µX (t + ∆) + e−κX∆(Xt − µX (t)) + λσT

√√√√√ 1 − e−2κX∆

2κX

N1 + e−κX∆/2ZX

Tt+∆ = µT (t + ∆) + e−κT∆(Tt − µT (t)) + σT

√√√√√ 1 − e−2κT∆

2κT

(ρN1 +

√
1 − ρ2N2),

where N1 ∼ N (0, 1), N2 ∼ N (0, 1) and ZX ∼ NIG(αX , βX , δX ,− δXβX

γX )
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Future Swap

E-HDD E-CDD

Figure: From top left to bottom right future, swap, E-HDD and E-CDD prices computed with 100,000 simulation-Monte Carlo (blue) and
explicit formulas (green) methods. Each contract lasts one month of 2018. Time t0 corresponds to 30 days ahead of the first day of the
month, t1 to the first day of the month and t2 to the last day of the month.
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Pricing quanto derivatives

For double sided quanto options we suggest a first order Taylor ’s
expansion on λ for t ∈ [t1, t2]

Q(t1, t2) =

t2∑
t=t1

(
Eλ=0((St − S̄)+ | Ft0

) ×
((

T̄ − µT (t) − e−κT (t−t0)(Tt0
− µT (t0))

)
×

Φ
( T̄ − µT (t) − e−κT (t−t0)(Tt0

− µT (t0))

σT kT (t − t0)

)
+

σT kT (t − t0)√
2π

exp
(
−

1

2

( T̄ − µT (t) − e−κT (t−t0)(Tt0
− µT (t0))

σT kT (t − t0)

)2))

−
(
Eλ=0((St − S̄)+ | Ft0

) + S̄Pλ=0

(
St ≥ S̄ | Ft0

) )
×

σ
2
T kXT (t − t0)

2Φ
( T̄ − µT (t) − e−κT (t−t0)(Tt0

− µT (t0))

−σT kT (t − t0)

))
λ

)
+ o(λ)

(15)

where Φ is the cumulative distribution function of the standard Gaussian
distribution, kT (·) , kX (·) and kXT (·) are defined in function of κX and
κT .

62/71



Pricing quanto derivatives

For double sided quanto options we suggest a first order Taylor ’s
expansion on λ for t ∈ [t1, t2]

Q(t1, t2) =

t2∑
t=t1

(
Eλ=0((St − S̄)+ | Ft0

) ×
((

T̄ − µT (t) − e−κT (t−t0)(Tt0
− µT (t0))

)
×

Φ
( T̄ − µT (t) − e−κT (t−t0)(Tt0

− µT (t0))

σT kT (t − t0)

)
+

σT kT (t − t0)√
2π

exp
(
−

1

2

( T̄ − µT (t) − e−κT (t−t0)(Tt0
− µT (t0))

σT kT (t − t0)

)2))

−
(
Eλ=0((St − S̄)+ | Ft0

) + S̄Pλ=0

(
St ≥ S̄ | Ft0

))
×

σ
2
T kXT (t − t0)

2Φ
( T̄ − µT (t) − e−κT (t−t0)(Tt0

− µT (t0))

−σT kT (t − t0)

))
λ

)
+ o(λ)

(15)

where Eλ=0((St − S̄)+ | Ft0) is computed through Carr Madan
formula [12, Equations (5) and (6)] and Pλ=0

(
St ≥ S̄ | Ft0

)
through

Gil-Pelaez [19] inversion formula.
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Pricing quanto derivatives

Figure: Quanto prices computed with 100,000 simulation-Monte Carlo (blue) and Equation (15) (green) methods. On the left the price
corresponds to Formula (15). On the right only the first term of the Taylor development in Equation (15) is considered. This is equivalent
to consider λ = 0. Each contract lasts a month of 2018. Time t0 corresponds to 30 days ahead of the first day of the month, t1 to the
first day of the month and t2 to the last day of the month. The computation of the derivatives through the formulas is around 6 times
faster than using Monte Carlo simulations.

63/71



Outline

Introduction

A stochastic volatility model for temperature derivative pricing
An alternative model for temperature dynamics
Estimation challenges
Application to pricing for weather derivatives

Risk valuation of quanto derivatives on temperature and electricity
A model for average temperature and electricity price
Estimation procedure
Pricing quanto derivatives
Risk decomposition and hedging of quanto derivatives

Summary

64/71



Static hedging of quanto derivatives

Daily double-sided quantos
Under Model (ETM) and for ∆ > 0, let consider the portfolio

(St+∆ − S̄)+(T̄ − Tt+∆)
+︸ ︷︷ ︸

double-sided option quanto

− d0
t,t+∆︸ ︷︷ ︸
cash

−d1
t,t+∆ (T̄ − Tt+∆)

+︸ ︷︷ ︸
HDD future

−d2
t,t+∆ (St+∆ − S̄)+︸ ︷︷ ︸

call on spot
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Static hedging of quanto derivatives

Daily double-sided quantos
Under Model (ETM) and for ∆ > 0, let consider the portfolio

E
[(

(St+∆ − S̄)+(T̄ − Tt+∆)
+ − d0

t,t+∆ − d1
t,t+∆(T̄ − Tt+∆)

+ − d2
t,t+∆(St+∆ − S̄)+

)2
|Ft

]
.
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Static hedging of quanto derivatives

Daily double-sided quantos
Under Model (ETM) and for ∆ > 0, let consider the portfolio

E
[(

(St+∆ − S̄)+(T̄ − Tt+∆)
+ − d0

t,t+∆ − d1
t,t+∆(T̄ − Tt+∆)

+ − d2
t,t+∆(St+∆ − S̄)+

)2
|Ft

]
.

(d0
t,t+∆, d

1
t,t+∆, d

2
t,t+∆) minimising the above quadratic criterion is the

unique solution of the linear system below:


1 E[(T̄ − Tt+∆ )+|Ft ] E[(St+∆ − S̄)+|Ft ]

E[(T̄ − Tt+∆ )+|Ft ] E[((T̄ − Tt+∆ )+ )2|Ft ] E[(St+∆ − S̄)+ (T̄ − Tt+∆ )+|Ft ]

E[(St+∆ − S̄)+|Ft ] E[(St+∆ − S̄)+ (T̄ − Tt+∆ )+|Ft ] E[((St+∆ − S̄)+ )2|Ft ]




d0

t,t+∆

d1

t,t+∆

d2

t,t+∆

 =


E[(St+∆ − S̄)+ (T̄ − Tt+∆ )+|Ft ]

E[(St+∆ − S̄)+ ((T̄ − Tt+∆ )+ )2|Ft ]

E[((St+∆ − S̄)+ )2 (T̄ − Tt+∆ )+|Ft ]


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Static hedging of quanto derivatives

Daily double-sided quantos
Under Model (ETM) and for ∆ > 0, let consider the portfolio

E
[(

(St+∆ − S̄)+(T̄ − Tt+∆)
+ − d0

t,t+∆ − d1
t,t+∆(T̄ − Tt+∆)

+ − d2
t,t+∆(St+∆ − S̄)+

)2
|Ft

]
.

(d0
t,t+∆, d

1
t,t+∆, d

2
t,t+∆) minimising the above quadratic criterion is the

unique solution of the linear system below:


1 E[(T̄ − Tt+∆ )+|Ft ] E[(St+∆ − S̄)+|Ft ]

E[(T̄ − Tt+∆ )+|Ft ] E[((T̄ − Tt+∆ )+ )2|Ft ] E[(St+∆ − S̄)+ (T̄ − Tt+∆ )+|Ft ]

E[(St+∆ − S̄)+|Ft ] E[(St+∆ − S̄)+ (T̄ − Tt+∆ )+|Ft ] E[((St+∆ − S̄)+ )2|Ft ]




d0

t,t+∆

d1

t,t+∆

d2

t,t+∆

 =


E[(St+∆ − S̄)+ (T̄ − Tt+∆ )+|Ft ]

E[(St+∆ − S̄)+ ((T̄ − Tt+∆ )+ )2|Ft ]

E[((St+∆ − S̄)+ )2 (T̄ − Tt+∆ )+|Ft ]



Computed through first order Taylor expansion in λ, Carr Madan
formula [12] and Gil-Pelaez [19] inversion formula.
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Static hedging of quanto derivatives

Figure: From top left to bottom right, d0t0,t1+i∆, d1t0,t1+i∆and d2t0,t1+i∆ starting from 1st January 2018 (t1), with t0 = t1 − 30

and with t0 = t1 − 30, ∆ = 1 and i = 0, . . . , 30.
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Static hedging of quanto derivatives

Monthly double-sided quantos
Let know consider the monthly portfolio:

31∑
i=1

(St1+i∆ − S̄)+(T̄ − Tt1+i∆)+ − d0t0,t1+(i−1)∆ − d1t0,t1+(i−1)∆(T̄ − Tt1+i∆)+ − d2t0,t1+(i−1)∆(St1+i∆ − S̄)+

and perform daily hedging as above to get:

Without
hedging

Hedging Hedging
λ = 0

January −3, 358 0.208 −93.072
May −89.174 −0.113 −12.283

Without
hedging

Hedging Hedging
λ = 0

January 2, 197 391 394
May 177 98 100

Table: Average (left) and standard deviation (right) of∑31
i=1 d0

t0,t1+(i−1)∆
+ d1

t0,t1+(i−1)∆
(T̄ −Tt1+i∆)+ + d2

t0,t1+(i−1)∆
(St1+i∆ − S̄)+ − (St1+i∆ − S̄)+(T̄ −Tt1+i∆)+

for portfolio optimisation starting on 1st January 2018 (for t1 on the left) and 1st May 2018 (for t1 on the right), with t0 = t1 − 30 and
lasting the whole month.
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Static hedging of quanto derivatives

Figure: Empirical density of
∑31

i=1 −(St1+i∆ − S̄)+(T̄ − Tt1+i∆)+ (blue) and∑31
i=1 d0

t0,t1+(i−1)∆
+ d1

t0,t1+(i−1)∆
(T̄ −Tt1+i∆)+ + d2

t0,t1+(i−1)∆
(St1+i∆ − S̄)+ − (St1+i∆ − S̄)+(T̄ −Tt1+i∆)+

(green) for portfolio optimisation starting on 1st January 2018 (for t1 on the left) and 1st May 2018 (for t1 on the right), with
t0 = t1 − 30 and lasting the whole month.
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Summary

Develop a coupled model for daily average temperature and
electricity price.

Overpass estimation challenges thanks to MLE and CLSE on
characteristic function.

Obtain explicit and semi-explicit formulas for futures, swap,
single-sided and double-sided options.

Show risk hedging capacity of single-sided (E-HDD) and
double-sided quanto options.
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Summary

Main contributions

We study risk valuation for two weather derivatives: classic
temperature derivatives and quanto derivatives combining
temperature and electricity price.

For both, we propose efficient models to describe the dynamics of
the underlyings leveraging and extending literature proposals.

We address succesfully estimation, pricing and hedging challenges.

More broadly

We contribute to the establishment of a mathematical framework to
better understand risk related to weather derivatives.

We suggest direct applications of these models to practitioners.
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Estimation Challenges

2. Estimate σ2 and K

min
K , γ, δ

N−1∑
i=0

(
ζ(i+1)∆ − E[ζ(i+1)∆|ζi∆]

)2
(16)

3. Estimate η2

min
η2

N−1∑
i=0

(
(ζ(i+1)∆ − E[ζ(i+1)∆|ζi∆])2 − E[

(
ζ(i+1)∆ − E[ζ(i+1)∆|ζi∆]

)2 |ζi∆])2

(17)

4. Estimate ρ

min
ρ

N−1∑
i=0

(
(T(i+1)∆ − E[T(i+1)∆|Fi∆])(ζ(i+1)∆ − E[ζ(i+1)∆|Fi∆])

− E[(T(i+1)∆ − E[T(i+1)∆|Fi∆])(ζ(i+1)∆ − E[ζ(i+1)∆|ζi∆]|Fi∆])
)2

(18)



Estimation Challenges
Robustness of estimations of σ2 independently of Q

Figure: Plots of observed volatility process ζ̂ (blue) and simulated volatility processes ζ̂s (dark blue) for Paris for averaging windows Q
equals 5 (left) and 12 (right).

Sensitivity of K̂ and η̂2 to Q

City K̂ K̂Q=1 K̂Q=2 K̂Q=5 K̂Q=8 K̂Q=10 K̂Q=12

Stockholm 0.147 2.261 0.886 0.301 0.190 0.157 0.140
Paris 0.396 2.853 1.336 0.552 0.403 0.286 0.265

City η̂2 η̂2Q=1 η̂2Q=2 η̂2Q=5 η̂2Q=8 η̂2Q=10 η̂2Q=12

Stockholm 0.629 56.229 12.288 2.123 0.896 0.644 0.499
Paris 1.043 56.429 13.385 2.506 1.156 0.690 0.531

Table: Estimation of K and η2 for different averaging time windows Q.



Fast Fourier Transform Approach

Characteristic Function [12]

Figure: Characteristic function E
[
exp
(
iu1T̃t′

)]
(left) and E

[
exp

(
iu3
∫ t′
t T̃s ds

)
|Ft

]
(right) for Paris temperature during January

2019 for an observation time 30 days ahead and δ = 0.1 day.



Fast Fourier Transform Approach

Fast Fourier Transform for pricing HDD and CAT options
Let note that during winter, we mostly have Tt ≤ Tb. Hence,

E[(HDD−HDDstrike)
+] ≈ E[((t2− t1+1)Tb−HDDstrike−CAT )+]. (19)

Let first compute the characteristic function of CAT

Φ(u) ≈ e
iu
∑t2

t=t1
s(t)E[e iu

∫ t2+1
t1

T̃t dt |Ft0
]

≈ e
iu
∑t2

t=t1
s(t)

exp(a0(t1, t2 + 1)) exp(ǎ0(t0, t1) + ǎ1(t1 − t0)T̃t0
+ ǎ2(t1 − t0)ζt0 )

where

a0 is deduced by applying Proposition 32 with u1 = u2 = 0 and
u3 = u

ǎ0, ǎ1, ǎ2 by applying Proposition 32 with u1 = u 1−e−κ(t2+1−t1)

κ ,
u2 = −ia2(t2 + 1− t1) and u3 = 0



Fast Fourier Transform Approach

Fast Fourier Transform for pricing HDD and CAT options
Finally, we can use

E[((t2 − t1 + 1)Tb − HDDstrike − CAT )+] ≈ δx

N−2∑
k=0

P(T̃t ≤ xk ) +
1

2
P(T̃t ≤ xN−1)

 . (20)

which can be computed through FFT inverse

P(T̃ ≤ xk) ≈
1

2
− δv

π
R

N−1∑
j=0

e−ivj+1/2xkΦ(vj+1/2)

ivj+1/2


where we define δxδv = 2π

N , vj+1/2 = (j + 1/2)δv , xk =
(t2−t1+1)Tb−HDDstrike+(k−N+1)δx , j ∈ {0,N−1}, k ∈ {0, . . . ,N−1}



Fast Fourier Transform Approach

Fast Fourier Transform for pricing HDD and CAT options

Figure: Cumulative distribution function of CAT for January 2019 and 30 days observation in advance computed by the FFT method (red)

and Monte-Carlo with 50, 000 simulations (blue) N = 215.
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