
Discrimination and Interpretability of Predictive Models

Arthur Charpentier
with Marie-Pier Côté, Olivier Côté Agathe Fernandes-Machado
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“Discrimination is the act, practice, or an instance of separating or
distinguishing categorically rather than individually,” Merriam-Webster (2022).



What is an “actuary”?
“To be an actuary is to be a specialist in general-
ization, and actuaries engage in a form of decision
making that is sometimes called actuarial. Actuar-
ies guide insurance companies in making decisions
about large categories that have the effect of attribut-
ing to the entire category certain characteristics that
are probabilistically indicated by membership in the
category, but that still may not be possessed by a
particular member of the category,” Schauer (2006).
[Most] “actuaries cannot think of individuals except as
members of groups” claimed Brilmayer et al. (1979). Each
individual is assigned the same value as all other members
of the group to which it is assigned.
See also Mowbray (1921) or Bailey and Simon (1960), or
more recently Board (2005) and Finger (2006)
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What is an “actuarial model” (as in most actuarial textbooks)?
▶ linear regression on categories - “segmentation”

ŷ(man) = β0 + β11urban + β21young + β3 1man = ŷ(woman) + β3

+β3 ceteris paribus

▶ Poisson regression (frequency) on categories, or not

ŷ(man) = exp
[
β0 + β11urban + β2 1young + β3 1man

]
= ŷ(woman) · exp[β3]

×eβ3 ceteris paribus

ŷ(man) = exp
[
β0 + β11urban + β2 age + β3 1man

]
= ŷ(woman) · exp[β3]

If β3 small, eβ3 ≈ 1 + β3, i.e. “β3 = 0.2” ←→ “+20% for men”
Thus “interpretation” is simple (if we do not discuss what “ceteris paribus” means).
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“The myth of the actuary” (objectivity vs. subjectivity)

▶ The rhetoric of insurance exclusion – numbers, objectivity and statistics – forms
what Brian Glenn calls “the myth of the actuary,” “a powerful rhetorical
situation in which decisions appear to be based on objectively determined
criteria when they are also largely based on subjective ones” or “the
subjective nature of a seemingly objective process.” “Virtually every aspect
of the insurance industry is predicated on stories first and then numbers,”
Glenn (2000, 2003)

▶ Importance of interpretation and explainability of models
▶ Some models have a high accuracy... for wrong reasons...
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“The myth of the actuary” (objectivity vs. subjectivity)

▶ E.g., classifiers, y ∈ {0, 1}
▶ why a prediction of ŷ = 1?

“On a collection of additional
60 images, the classifier predicts
“Wolf” if there is snow (or light
background at the bottom), and
“Husky” otherwise, regardless of
animal color, position, pose, etc.,”
Ribeiro et al. (2016)

▶ Also, was m̂(x i) = 1.32%
a good prediction if yi = 1?
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From Econometrics to Machine Learning. Why could there be a problem?

▶ Econometrics is dead, long live “artificial intelligence”
▶ “Machine learning” context, i.e. black boxes, with less intuitive interpretation
▶ “Big data” context, i.e. easy to get proxies for protected/sensitive variables

y urban age race
... ... ... ...
... ... ... ...

y urban age zip lastname model credit
... ... ... ... ... ... ...
... ... ... ... ... ... ...

It is possible to predict the “race” based on non-protected variables, e.g. names and
geolocation, see “Bayesian Improved Surname Geocoding (BISG)”, Elliott et al.
(2009), Imai and Khanna (2016)
▶ Problem of “Indirect discrimination”, or “statistical / proxy discrimination”
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Where could there be a problem?

Ratemaking is an issue, but also underwriting,
“Redlining”, for loans, but also insurance, Kerner (1968)
“use of a red line around the questionable areas on
territorial maps centrally located in the Underwrit-
ing Division for ease of reference by all Underwrit-
ing personnel [...] mark off certain areas * * * to
denote a lack of interest in business arising in these
areas In New York these are called K.O. areas mean-
ing knock-out areas; in Boston they are called redline
districts. Same thing – don’t write the businesss.”
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What is a “actuarial fairness”?

▶ “Actuarial fairness” ?

... “on an actuarially fair basis; that is, if the
costs of medical care are a random variable with
mean m, the company will charge a premium
m, and agree to indemnify the individual for all
medical costs,” Arrow (1963).

“actuarially fair premiums” = “expected losses”

of the insured risk, see also Frezal and Barry (2020).

“governments must recognise that there is a difference between unfair
discrimination and insurers differentiating prices according to risk,”
Swiss Re (2015), cited in Meyers and Van Hoyweghen (2018)
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So “actuarial fairness” has to do with “accuracy”?
Following Arrow (1963), “actuarially fair premiums” = “expected losses”
“Insurance is the contribution of the many to the misfortune of the few”

policyholder insurer

premium

indemnity
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So “actuarial fairness” has to do with “accuracy”?
▶ There is no “law of one price” in insurance, see Froot et al. (1995)
→ with different models and different portfolio, we can have two different premiums

“Insurance is the contribution of the many to the misfortune of the few”

▶ Insurance is a risk transfer (from a policyholder to an insurance company)

policyholder insurer

premium

indemnity

▶ Actuarial Fairness is about the balance of this risk transfer

ø @freakonometrics § freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, May 2025, Institut des Actuaires 9 / 44

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


So “actuarial fairness” has to do with “accuracy”?

policyholder

“Insurance is the contribution of the
many to the misfortune of the few”

▶ As discussed in Charpentier (2025),
insurance is also a risk sharing
(among policyholders)

▶ Fairness (and equity) have to do with
risk sharing and cross-subsidies within
risk classes

▶ what is “expected losses”?
E(Y ) or E(Y | X)?
and what should be X?
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So “actuarial fairness” has to do with “accuracy”?
When y is binary, y ∈ {0, 1}, hard to assess if ŷ = 12.2486% is accurate or not...
“If we are asked to find the probability holding for an in-
dividual future event, we must first incorporate the case
in a suitable reference class,” Reichenbach (1971)

“When we speak of the ‘probability of death’, the exact
meaning of this expression can be defined in the follow-
ing way only. We must not think of an individual, but of
a certain class as a whole, e.g., ‘all insured men forty-one
years old living in a given country and not engaged in
certain dangerous occupations’. A probability of death
is attached to the class of men or to another class that
can be defined in a similar way. The phrase ‘probabil-
ity of death’, when it refers to a single person, has no
meaning for us at all,” von Mises (1928, 1939)
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So “actuarial fairness” has to do with “accuracy”?

As explained in Van Calster et al. (2019), ”among patients
with an estimated risk of 20%, we expect 20 in 100 to
have or to develop the event,”
• If 40 out of 100 in this group are found to have the

disease, the risk is underestimated
• If we observe that in this group, 10 out of 100 have the

disease, we have overestimated the risk.

The prediction m̂(X) of Y is a well-calibrated prediction if

E
[

Y
∣∣ Ŷ = ŷ

]
= ŷ , ∀ŷ

estimate risk ŷ = 20%

20 out of 100 (proportion y = 1)
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So “actuarial fairness” has to do with “accuracy”?
“Suppose the Met Office says that the probability of rain tomor-
row in your region is 80%. They aren’t saying that it will rain
in 80% of the land area of your region, and not rain in the other
20%. Nor are they saying it will rain for 80% of the time. What
they are saying is there is an 80% chance of rain occurring at
any one place in the region, such as in your garden. [...] A fore-
cast of 80% chance of rain in your region should broadly mean
that, on about 80% of days when the weather conditions are
like tomorrow’s, you will experience rain where you are. [...] If
it doesn’t rain in your garden tomorrow, then the 80% forecast
wasn’t wrong, because it didn’t say rain was certain. But if you
look at a long run of days, on which the Met Office said the
probability of rain was 80%, you’d expect it to have rained on
about 80% of them.” McConway (2021)
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So “actuarial fairness” has to do with “accuracy”?

This concept goes beyond the simple issue of personalization (discussed in Barry and
Charpentier (2020))

There are usually classical assumptions for “model” ŷ ,

▶ (globally) well balanced, E
[

Ŷ
]

= E
[

Y
]

premium collected losses paid
▶ (locally) well balanced, E

[
Ŷ

∣∣ Ŷ = ŷ
]

= E
[

Y
∣∣ Ŷ = ŷ

]
= ŷ , ∀ŷ (“calibration”)
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From ”accuracy” to ”calibration”

Following Wilks (1990), define the calibration
curve as

g :
{

[0, 1]→ [0, 1]
p 7→ g(p) := E[Y | m̂(X) = p]

g is estimated using local regression of
{(yi , m̂(x i))}
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“At the core of insurance business lies discrimination”.
▶ ”What is unique about insurance is that even statistical discrimination

which by definition is absent of any malicious intentions, poses significant
moral and legal challenges. Why? Because on the one hand, policy makers
would like insurers to treat their insureds equally, without discriminating
based on race, gender, age, or other characteristics, even if it makes
statistical sense to discriminate (...) On the other hand, at the core of
insurance business lies discrimination between risky and non-risky insureds.
But riskiness often statistically correlates with the same characteristics
policy makers would like to prohibit insurers from taking into account. ”
Avraham (2017)

▶ “Technology is neither good nor bad; nor is it neutral,” Kranzberg (1986)

▶ “Machine learning won’t give you anything like gender neutrality ‘for free’
that you didn’t explicitly ask for,” Kearns and Roth (2019)
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Quantifying discrimination, isn’t it an old problem?

See Becker (1957) or Baldus and Cole (1980), among (many) others.

Several papers over the past 15 years revisited several notions and concepts.
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Is there a (simple) way to quantify unfairness ?

▶ classical fairness concept are related to so called “group fairness”, where we have
a statistical (overall perspective),

▶ in some problems, we focus on discrimination in “continuous outcomes”,
▶ m̂(x i , si) ∈ [0, 1] (score) that could also be denoted ŷi
▶ m̂(x i , si) ∈ R+ (premium) that could also be denoted ŷi
→ classical in insurance modeling

▶ in some problems, we focus on discrimination in binary decisions ŷi ∈ {0, 1},
usually obtained as
▶ ŷi = 1(m̂(x i , si) > threshold) ∈ {0, 1} (class) that could also be denoted
→ classical in computer science
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Several definitions of “fairness” or “non-discriminatory”

demographic parity → E[ Ŷ | S = A ] ?= E[ Ŷ | S = B ]
score ŷ

sensitive sensitive

equalized odds → E[ Ŷ | Y = y , S = A ] ?= E[ Ŷ | Y = y , S = B ],∀y
score ŷ

outcome y

calibration → E[ Y | Ŷ = u , S = A ] ?= E[ Y | Ŷ = u , S = B ], ∀u
score ŷ

outcome y
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Isn’t it a problem to have several definitions?

From Feller et al. (2016),
• for White people , among those who did

not re-offend (y), 22% were wrongly
classified (ŷ),

• for Black people , among those who
did not re-offend , 42% were wrongly
classified ,

• Problem, since 42%≫ 22%

P[ Ŷ = high | Y = no , S = black ] = 42% ?= P[ Ŷ = high | Y = no , S = white ] = 22%,
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Isn’t it a problem to have several definitions?

From Dieterich et al. (2016),
• for White people , among those who were

classified as high risk (ŷ), 40% did not
re-offend (y),

• for Black people , among those who were
classified as high risk (ŷ), 35% did not
re-offend (y),

• No problem, since 35 ≈ 40%

P[ Y = no | Ŷ = high , S = black ] = 35% ?= P[ Y = no | Ŷ = high , S = white ] = 40%.

ø @freakonometrics § freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, May 2025, Institut des Actuaires 21 / 44

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


Is it always possible to have a sensitive-free model (with respect to ...)?

For decisions (ŷ ∈ {0, 1}, e.g., “obtain a loan”),

demographic parity → P[ Ŷ = 1 | S = A ] ?= P[ Ŷ = 1 | S = B ]

decision ŷ

those decisions are usually based on scores, and thresholds

demographic parity → E[ m̂(X ,S) > t | S = A ] ?= E[ m̂(X ,S) > t | S = B ]
score m̂

One can achieve demographic parity, simply selecting different thresholds

demographic parity → E[ m̂(X , S) > tA | S = A ] ?= E[ m̂(X ,S) > tB | S = B ]

(with that strategy, usually impossible to achieve equalized odds)
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Is it always possible to have a sensitive-free model (with respect to ...)?
For decisions (ŷ ∈ {0, 1}, e.g., “obtain a loan”), we considered

demographic parity → E[ Ŷ | S = A ] ?= E[ Ŷ | S = B ]
and we can consider the analogous for scores (possibly used to assess premiums),

demographic parity → E[ m̂(X ,S) | S = A ] ?= E[ m̂(X ,S) | S = B ]
score ŷ

▶ individual in group A
with a score ŷ(A) = 60%
corresponding to quantile α
(here 0.5)

▶ in group B , the same
quantile α
corresponds to ŷ(B) = 40%
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Is it always possible to have a sensitive-free model (with respect to ...)?
▶ To get a fair model (neutral with respect to s), consider an average between

the two models,

ŷ⋆ = P[S = A] · ŷ(A) + P[S = B] · ŷ(B)

score in group B with quantile αscore in group A with quantile α
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A spectrum of fair premiums with Causal Graphs

εX εY

gX (D) gY (D)

D

µ(X ,D)X

U

Y

As in Côté et al. (2024), consider a
structural causal model Markov property

{
X = ψX (D, εX ) = gX (D) + εX

Y = ψY (D,X , εY ) = gY (D) + µ(X ) + εY

with εX ⊥⊥ D and εY ⊥⊥ D.

▶ abduction use the evidence (X ,D) to
determine the value of the noise εX

▶ prediction use the estimated noise εX to
compute the counterfactual of X as
ψX (D′, εX )
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Optimal Transport for Counterfactual, Gaussian Additive Case

εX

gX (D)

D

X

U

εX

gX (D′)

D′

X ′

Pearl (2009) suggested a
twin network representation of the counterfactual
▶ abduction use the evidence (X ,D):

εX = X − gX (D)
▶ prediction use the same estimated noise εX to

compute the counterfactual of X
X ′ = gX (D′)+ εX
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Optimal Transport for Counterfactual, General Case

εX

gX (D)

D

X

U

εX

gX (D′)

D′

X ′

Charpentier et al. (2023a) and then Fernandes Machado
et al. (2025a,b) extended this using

optimal transport on causal graphs
▶ FA(·) cdf of X | D = A, FA(x) = P(X ≤ x | D = A)

abduction u = FA(X ) probability level in group A
▶ FB(·) cdf of X | D = B,

FB(x) = P(X ≤ x | D = B)
prediction F −1

B (u) quantile of level u in group B

counterfactual is X ′ = F −1
B (FA(X ))
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A spectrum of fair premiums, Côté et al. (2024, 2025)

µB(x , d) = E(Y | X = x ,D = d) ← best estimate

µU(x) = E(Y | X = x) ← unaware

µA(x) = ED(Y | X = x ,D) = ED
(
µB(x ,D)

)
← aware

µA(x) = P(D = A)µB(x , d = A) + P(D = B)µB(x , d = B) if D ∈ {A,B}

µC (x , d) = E(Y | εX = x − Πd(x)) ← corrective

µC (x , d = A) = P(D = A)µB(x , d = A) + P(D = B) · FB ◦ F −1
A

(
µB(x , d = A)

)
µH(x) = ED(Y | X = x ,D) = ED

(
µC (x ,D)

)
← hyperaware
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A spectrum of fair premiums, Côté et al. (2024, 2025)
(on a real insurance portfolio, we compared the five premiums, and the “real one”)
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“In order to treat some persons equally, we must treat them differently”
▶ Supreme Court Justice Harry Blackmun stated, in 1978,

“In order to get beyond racism, we must first take account of race. There is
no other way. And in order to treat some persons equally, we must treat
them differently,” Knowlton (1978), cited in Lippert-Rasmussen (2020)

▶ To counteract disparate impact , intentional disparate treatment is necessary
▶ See philosophical discussions about affirmative action, e.g., Rubenfeld (1997);

Pojman (1998); Anderson (2004)
▶ In 2007, John G. Roberts of the U.S. Supreme Court submits

“The way to stop discrimination on the basis of race is to stop
discriminating on the basis of race,” Sabbagh (2007) and Turner (2015)

▶ corresponds to the “colorblind” approach
▶ Rejects any form of disparate treatment , even for corrective purposes, and

reproduction of historical inequalities will lead to disparate impact
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“Neutral with respect to some sensitive attribute?”

What does “neutral with respect to s” really means ?

We have seen that accuracy was assessed with respect to data in the portfolio,

y = argmin
γ∈R

{ n∑
i=1

(
yi − γ

)2 }
or E[Y ] = argmin

γ∈R

{ ∑
y

(
y − γ

)2P[Y = y ]
}

based on observations from the insurer’s portfolio. Technically, should we consider
▶ expected values / probabilities / independence properties based on P (portfolio)
▶ expected values / probabilities / independence properties based on Q (market)

(ongoing work Why portfolio-specific fairness should fail to extend market-wide:
Selection bias in insurance with M.P. Côté & O. Côté)

Should we ask for neutrality “in the portfolio” or for some “targeted population” ?
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Discrimination in the data, or in the model?
On a French motor dataset, average claim frequencies are
8.94% (men) and 8.20% (women).
Consider some logistic regression to estimate annual claim
frequency, on k explanatory variables excluding gender.

men women
k = 0 8.68% 8.68%
k = 2 8.85% 8.37%
k = 8 8.87% 8.33%
k = 15 8.94% 8.20%
empirical 8.94% 8.20%

Models simply tend to reproduce what was observed in
the data (see “is-ought” problem, in Hume (1739)).
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Discrimination in the data, or in the model?
David Hume’s “is-ought” problem, in Hume (1739)

what is observed, what is statistically normal

π(x) = EP[Y |X = x] where P is the historical probability

̸= what should be, what we expect from an ethical norm

π(x) = EP⋆ [Y |X = x] where P⋆ is some “fair” probability

“keep in mind that machine learning can only be used to memorize patterns
that are present in your training data. You can only recognize what you’ve seen
before. Using machine learning trained on past data to predict the future is
making the assumption that the future will behave like the past,” Chollet (2021)

Classical clausula rebus sic stantibus (”with things thus standing”) in predictive
modeling (statistics and machine learning)
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Discrimination in the data, or in the model?
▶ change the training data to de-bias (through weights) : pre-processing

if we can draw i.i.d. copies of a random variable Xi ’s, under probability P, then

1
n

n∑
i=1

h(xi)→ EP[h(X )], as n→∞ “law of large numbers”

but if we want to reach EQ[h(X )], consider

1
n

n∑
i=1

dQ(xi)
dP(xi)︸ ︷︷ ︸
weight ωi

h(xi)→ EQ[h(X )], as n→∞.

▶ keep the biases data, but distort the outcome : post-processing
▶ add a fairness constraint (penalty) in the optimization problem : in-processing

as classical adversarial techniques, Grari et al. (2021)
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Discrimination, with different perspectives
▶ Regulatory perspective, “group fairness” (discussed previously)
▶ Policyholders perspective, “individual fairness”

A decision satisfies individual fairness if “had the protected attributes (e.g., race) of
the individual been different, other things being equal, the decision would have
remained the same.”
▶ also named “counterfactual fairness” in Kusner et al. (2017), and should be

related to classical causal inference problem, (conditional) average treatment
effect (the “treatement” being the sensitive attribute),
“other things being equal” ?ceteris paribus ? See “revolving variable” in
Kilbertus et al. (2017). Consider a men (s = A) with height x = 6′3 (or 190 cm).
If that person had been a women (s = B) would she have height x = 6′3 ?
(hint: no, consider similar quantiles, as discussed previously, see Charpentier et al.
(2023a))
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What if we neither observe nor collect sensitive personal information (s) ?
September 27, 2023, the Colorado Division of Insurance exposed a new proposed
regulation entitled Concerning Quantitative Testing of External Consumer Data and
Information Sources, Algorithms, and Predictive Models Used for Life Insurance
Underwriting for Unfairly Discriminatory Outcomes. Use of BIFSG (Bayesian
Improved First Name Surname and Geocoding), from Elliott et al. (2009).
Consider 12 people living near Atlanta, GA (Fulton & Gwinnett counties),

1 last first county city zipcode whi bla his asi
2 2 RADLEY OLIVIA Fulton Fairburn 30213 14 83 1 0
3 3 BOORSE KEISHA Fulton Atlanta 30331 97 0 3 0
4 4 MAZ SAVANNAH Gwinnett Norcross 30093 5 6 76 13
5 5 GAULE NATASHIA Gwinnett Snellville 30078 67 19 14 0
6 6 MCMELLEN ISMAEL Gwinnett Lilburn 30047 73 15 6 3
7 7 WASHINGTON BRYN Gwinnett Norcross 30093 0 95 3 0

(ongoing Predicting Unobserved Multi-Class sensitive Attributes : Enhancing
Calibration with Nested Dichotomies for Fairness with A.M. Patrón Piñerez, A.
Fernandes Machado, & E. Gallic)
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Can we use aggregate data related to sensitive information (s) ?

from Bickel et al. (1975), discussed as an illustration of ”Simpson’s paradox”
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Can we use aggregate data related to sensitive information (s) ?

Total Men Women Proportions
Total 5233/12763 ∼ 41% 3714/8442 ∼ 44% 1512/4321 ∼ 35% 66%-34%
Top 6 1745/4526 ∼ 39% 1198/2691 ∼ 45% 557/1835 ∼ 30% 59%-41%

A 597/933 ∼ 64% 512/825 ∼ 62% 89/108 ∼ 82% 88%-12%
B 369/585 ∼ 63% 353/560 ∼ 63% 17/ 25 ∼ 68% 96%- 4%
C 321/918 ∼ 35% 120/325 ∼ 37% 202/593 ∼ 34% 35%-65%
D 269/792 ∼ 34% 138/417 ∼ 33% 131/375 ∼ 35% 53%-47%
E 146/584 ∼ 25% 53/191 ∼ 28% 94/393 ∼ 24% 33%-67%
F 43/714 ∼ 6% 22/373 ∼ 6% 24/341 ∼ 7% 52%-48%

Data from Bickel et al. (1975). Formalized as follows: S is the (binary) genre, Ŷ the
admission decision, and X the program (category),
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Can we use aggregate data related to sensitive information (s) ?

P[ Ŷ = yes | S = men ] ≥ P[ Ŷ = yes | S = women ]

overall admission

sensitivesensitive

P[ Ŷ = yes | X = x , S = men ] ≤ P[ Ŷ = yes | X = x , S = women ], ∀x .
conditional on program

“the bias in the aggregated data stems not from any pattern of discrimination
on the part of admissions committees, which seems quite fair on the whole, but
apparently from prior screening at earlier levels of the educational system.
Women are shunted by their socialization and education toward fields of
graduate study that are generally more crowded, less productive of completed
degrees, and less well funded, and that frequently offer poorer professional
employment prospects,” Bickel et al. (1975)

ø @freakonometrics § freakonometrics freakonometrics.hypotheses.org – Arthur Charpentier, May 2025, Institut des Actuaires 39 / 44

https://twitter.com/freakonometrics
https://freakonometrics.github.io/
https://freakonometrics.hypotheses.org/


What if we collect s but we miss an important predictor (x) ?
Simpson’s paradox can also be seen a an omitted variable bias problem,yi = β0 + x⊤

1 β1 + x⊤
2 β2 + εi true model

yi = b0 + x⊤
1 b1 + ηi estimated models

b̂1 = (X⊤
1 X1)−1X⊤

1 y
= (X⊤

1 X1)−1X⊤
1 [X1β1 + X2β2 + ε]

= (X⊤
1 X1)−1X⊤

1 X1β1 + (X⊤
1 X1)−1X⊤

1 X2β2 + (X⊤
1 X1)−1X⊤

1 ε

= β1 + (X⊤
1 X1)−1X⊤

1 X2β2︸ ︷︷ ︸
β12

+ (X⊤
1 X1)−1X⊤

1 ε︸ ︷︷ ︸
νi

,

so that E[b̂1] = β1 + β12 ̸= β1.
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What if we collect s but we miss an important predictor (x) ?

Overall mortality rate for women, 8.12‰ in Costa Rica, against 9.29‰ in Sweden.
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Disentangling correlations

See some diverse areas of England face car insurance ’eth-
nicity penalty’ (remove from the BBC website since)

y , x and s can easily be correlated variables
spurious correlations problem ?
Need to use causal models to avoid indirect discrimination
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Multiple sensitive attributes, “robbing Peter to pay Paul”?

E[ m̂(X ,S1,S2) | S1 = A ] ̸= E[ m̂(X , S1, S2) | S1 = B ]
sensitive attribute 1

E[ m̂(X ,S1,S2) | S2 = C ] ≈ E[ m̂(X ,S1,S2) | S2 = D ]
sensitive attribute 2

Distort model m̂ to achieve fairness with respect to S1 −→ model m̃

E[ m̃(X ,S1,S2) | S1 = A ] = E[ m̃(X , S1, S2) | S1 = B ]
sensitive attribute 1

E[ m̃(X ,S1,S2) | S2 = C ] ̸= E[ m̃(X ,S1, S2) | S2 = D ]
sensitive attribute 2
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Conclusion (?)

▶ dealing with discrimination in insurance is tricky
since actuarial pricing is deeply related to the idea
of focusing on groups, and not individuals

▶ if we do not address properly those questions, there
is no way we can get fair models

▶ not collecting and not using protected attributes is
clearly not a good strategy

▶ there are still important questions that should be
addressed by regulators, that should provide
guidelines

To go further, Charpentier (2024) Insurance, Biases,
Discrimination and Fairness. Springer.
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