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Introduction

Risk measures theory:

Provide a mathematical definition of measures of risks.

Present and justify a unified framework for the analysis, construction

and implementation of measures of risk.

We will consider the acceptability regions of financial positions (and not

their optimality).

Risk measure : rather a regulator’s tool, or supervisor’s.

Risk measure : defined as the requested cost to join the acceptability

region.
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Definition of exposures

An exposure is described by a random variable X representing the

discounted net loss of the exposure at the maturity time.

Our aim is to quantify the risk of X by some number ρ(X ), where X

belong to a given class X of financial or insurance positions.
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Monetary risk measures

A mapping ρ : X → R is called a monetary risk measure if it satisfies the

following conditions for all X ,Y ∈ X :

[MO], Monotonicity : if X ≥ Y then ρ(X ) ≥ ρ(Y ).

[TI ], Translation Invariance or Cash additivity :

ρ(X −m) = ρ(X )−m, m ∈ R.

This implies in particular :

ρ(X − ρ(X )) = ρ(X )− ρ(X ) = 0.
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Monetary risk measures

The financial meaning of monotonicity is clear: The downside risk of

a position is increased if the loss profile is increased.

Translation invariance is also called cash invariance. It is motivated

by the interpretation of ρ(X ) as a capital requirement, i.e., ρ(X ) is

the amount which should be added to the position X in order to

make it acceptable. Thus, if the amount m is added to the position

and invested in a risk-free manner, the capital requirement is

reduced by the same amount.
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Convex risk measures

A monetary risk measure ρ : X → R is called a convex risk measure if it
satisfies:

[CO], Convexity : ρ(λX + (1− λ)Y ) ≤ λρ(X ) + (1− λ)ρ(Y ), for
0 ≤ λ ≤ 1.

The axiom of convexity gives a precise meaning to the idea that
diversification should not increase the risk.
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Convex risk measures

If ρ is convex and normalized (i.e ρ(0) = 0) then:

ρ(λX ) ≤ λρ(X ), for 0 ≤ λ ≤ 1.

ρ(λX ) ≥ λρ(X ), for λ ≥ 1.

Thus, the axiom of convexity also gives a precise meaning to the idea

that an increased exposure should increase the liquidity risk.

Risk appetite has a non linear effect on risk measurement!
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Dominant practical approach

The Value-at-Risk is the main practical risk measure. Computing an

α-quantile

α = reference probability (acceptable bankruptcy probability).

Losses values that are attained only with that probability.

(Ω,F ,P) is a fixed underlying probability space.

VaRα(X ) := qX (α) = inf{x ∈ R such that FX (x) ≥ α}

where FX denotes the cumulative distribution function of a r.v X .
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Average VaR

The Average Value-at-Risk at level α ∈ (0, 1] of a position X ∈ X is
given by:

AVaRα(X ) =
1

α

∫ 1

1−α
qX (u)du

AVaRα is a coherent risk measure and we have:

AVaRα(X ) = q̄ +
1

α
E
[
(X − q̄)+

]
where q̄ = qX (1− α).
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Worst case risk measure

Consider the worst case risk measure ρmax defined by:

ρmax(X ) = sup
ω∈Ω

X (ω)

The value ρmax(X ) is the least upper bound for the potential loss which
can occur in any scenario. The corresponding acceptance set A is given
by the convex cone of all non-negative functions in X. Thus, ρmax(X ) is a
coherent measure of risk. It is the most conservative measure of risk in
the sense that any normalized monetary risk measure ρ on X satisfies:

ρ(X ) ≤ ρ(sup
ω∈Ω

X (ω)) = ρmax(X )
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Entropic risk measure

Consider the entropic risk measure ργ defined by:

ργ(X ) = γ lnEP[exp (
1

γ
X )], γ ∈ R+

Interpretations:

The value ργ(X ) corresponds to a distorted mean of X , i.e to an
integral value in the framework of Pap’s g-calculus.

The value ργ(X ) is the certainty equivalent of the random exposure
X , for an exponential utility function.

We will see that ργ(X ) is the worst mean value minus a penalty,
evaluated through a family of models, the penalty being given by the
entropy of the models.
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Robust representation of convex risk measures

When ρ is a coherent risk measure (particular case of a convex risk
measure), the representation takes the form:

ρ(X ) = max
Q∈Q

EQ(X ), X ∈ X
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What about pricing?

Consider an (re-) insurance contract offering a protection C (X ) for

an initial exposure X .

The indifference price π of a possible buyer, using a risk measure

ρ, is defined by

ρ(X − C + π) = ρ(X )

In the most simple case we obtain

π = ρ(X )− ρ(X − C ).
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g : [0, 1]→ [0, 1] is called a distortion function if it is increasing and
satisfies g(0) = 0 and g(1) = 1.

These functions are used to compute subjective probabilities.

Linear objective mean :

EP(X ) =

∫ ∞
0

P(X > x) dx

Non linear subjective expectation :

W (X ) =

∫ ∞
0

g(P(X > x)) dx

Concave distortion = risk averse agent

Convex distortion = risk seeking agent

S-shaped distortion ?
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Distortion functions

The PH-transform (Proportional hasard) corresponds to g(y) = y r ,

r > 0.

The Wang-transform corresponds to g(y) = φ(φ−1(y) + α), α ∈ R.

C. Robert and P. Thrond, Distortion risk measures, ambiguity aversion

and optimal effort, ASTIN Bulletin, 2014.
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A possible measure of model uncertainty

Solve the following optimization problem :

sup
X∈Lµ,σ

ρ(X )

where Lµ,σ denotes the set of probability laws on R with mean µ and

variance σ2, and where ρ is a law invariant risk measure.
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Motivations

Quantification of model uncertainty: Barrieu and Scandolo,

Assessing financial model risk (2014)

Proposed metric:

RM(X0,L) :=
ρ(L)− ρ(X0)

ρ(L)− ρ(L)

where

ρ(L) := sup
X∈L

ρ(X ) and ρ(L) := inf
X∈L

ρ(X )
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Motivations

Model free pricing in insurance.

Compute

sup
X∈L

E[v(X )]

where v is a given convex function.

Jansen, Haezendonck and Goovaerts (1986)

Hurlimann (1988)
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We reformulate the problem in the following manner :

sup
q∈Qµ,σ

Φ(q)

where Qµ,σ denotes the set of quantile functions of probability laws on R
with mean µ and variance σ2, and where Φ is such that ρ(X ) = Φ(qX ).
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Proposition

Assume that Φ is convex, then

sup
q∈Qµ,σ

Φ(q) = sup
q∈Q2

µ,σ

Φ(q)

where Q2
µ,σ denotes the set of quantile functions of diatomic probability

laws on R with mean µ and variance σ2:

q(x) = K1[0,c)(x) + (K + γ)1[c,1](x)

where K ∈ R, γ > 0 and c ∈ (0, 1).
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Application to the case of distortion risk measures:

A distortion risk measure is law invariant and can be written

Φ(q) =

∫ 1

0

q(u)dψ(u)

where ψ is a given distortion function. It is a linear functional in the q

variable !
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To obtain a superior bound, all one need to compute is:

sup
q∈Q2

µ,σ

Φ(q) = sup
(K ,γ,c)

φ(K , γ, c)

= sup
c∈(0,1)

ψ(1− c)

(
µ+ σ

√
c

1− c

)
+ (1− ψ(1− c))

(
µ− σ

√
1− c

c

)
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To obtain a superior bound, all one need to compute is:

sup
q∈Q2

µ,σ

Φ(q) = µ+ σ

(
sup

c∈(0,1)

ψ(c)− c√
c(1− c)

)
.

We can get rid of µ and σ.
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Corollary

sup
q∈Qµ,σ

∫ 1

0

q(u)dψ(u) < +∞

if and only if

lim
x→0+

ψ(x)− x√
x(1− x)

< +∞ and lim
x→1−

ψ(x)− x√
x(1− x)

< +∞
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We can retrieve the following classical result:

For ψ(u) := 1u≥α, α ∈ (0, 1), we have

sup
X∈Lµ,σ

VaRα(X ) = µ+ σ

√
1− α
α

Free bonus:

inf
X∈Lµ,σ

VaRα(X ) = µ− σ
√

α

1− α
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