

Allocation d'actifs sous contrainte de SCR

Étudiant: BRACH Loïc

Encadrement: BOUZIDA Farah et BELLONE Benoît

Présentation Mémoire - 2016

Sommaire

•	Objectifs et contexte	Page 4
•	Approche Standard de calcul du SCR Marché	Page 5
•	Optimisation sous contrainte de SCR Standard	Page 10
•	Modélisation stochastique et génération de stress-scénarios	Page 15
•	Conclusion	Page 21
•	Principales références	Page 24

Allocation d'actifs sous contrainte de SCR

Objectifs et contexte

 Objectif: proposer des méthodes de calcul du SCR et y associer des méthodes d'optimisation spécifiques à l'assurance

Solvabilité II :

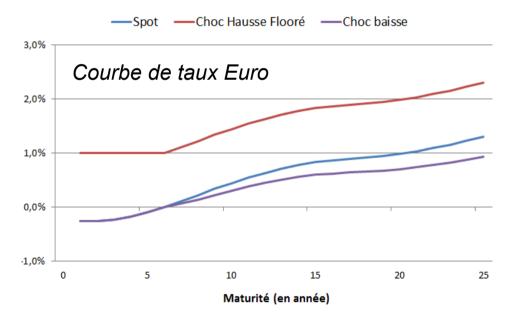
- Réforme prudentielle spécifique au secteur de l'assurance, entrée en vigueur au 1er janvier 2016
- Organisation en 3 piliers :
 - 1. Exigences quantitatives : Définition de montants de capital réglementaire à allouer
 - MCR: Minimum Capital Requirement
 - SCR: Solvency Capital Requirement
 - 2. Exigences qualitatives : Établissement d'une politique interne de suivi des risques
 - ❖ Dispositif ORSA : Own Risk and Solvency Assessment
 - 3. <u>Discipline de marché :</u> Exigence de publication d'information de manière uniforme

Zoom ici sur la contrainte du SCR :

- Objectif de couverture des engagements dans le cas de survenance d'un choc bicentenaire
- \triangleright Parallèle avec une VaR 1 an de niveau de confiance α = 0,5%

Et son impact sur les allocations d'actifs :

- Modification des besoins associés à l'assurance
- Intérêt de proposer une approche de calcul du SCR pour quantifier le risque d'un portefeuille


Approche Standard de calcul du SCR Marché (1/5)

- Chocs réglementaires définis par l'EIOPA par sources de risques (sous-modules) puis agrégation à l'aide d'une matrice de corrélation
- Principaux sous-modules contributeurs au SCR des portefeuilles d'assurances :
 - ➤ le SCR Taux : risque lié aux mouvements de la courbe des taux sans risque,
 - ▶ le SCR Spread : risque lié à une dégradation de la qualité de crédit des émetteurs estimé à l'aide des spreads de taux,
 - ▶ le SCR Actions : risque lié à une baisse des marchés actions,
 - ► le SCR Change : risque lié aux variations des taux de change par rapport à une devise de référence (ici €),
 - ➤ le SCR Concentration : risque lié à un investissement trop important dans un nombre réduit de contreparties,
 - ➤ le SCR Immobilier : risque lié à une baisse des prix des bien immobilier (hors investissement dans les fonds de gestion immobilière type REITs),
 - ➤ le SCR Défaut : risque lié au défaut sur les comptes cash ou contrats à terme.

Approche Standard de calcul du SCR Marché (2/5)

SCR Taux

Chocs réglementaires associés à des scénarios de hausse et de baisse des taux en fonction de la maturité de l'instrument :

 Remarque: dans le contexte actuel de taux bas, les chocs à la hausse sont flooré à +1% alors que les chocs à la baisse ne s'appliquent que pour les maturités où le taux est positif.

SCR Spread

Chocs tabulés en fonction :

- → de la nature de l'émetteur,
- > de sa notation,
- ▶ de la duration associée à la position.

SCR Spread nul pour les obligations souveraines de pays membres de l'Union Européenne (UE) ou de l'OCDE, dans le cas d'émission en devise locale.

 Remarque: non considérées dans la partie d'allocation sous contrainte de SCR, les positions de titrisation et de dérivés de crédit sont également présentées dans le cadre du mémoire.

Approche Standard de calcul du SCR Marché (3/5)

SCR Actions

Chocs réglementaires définis à partir de deux critères :

- Un choc de base en fonction de la zone géographique de la position,
- Un ajustement symétrique permettant de prendre en compte une sur ou sous-évaluation des marchés à une date donnée.

À fin avril 2016, le SCR Actions se calcule ainsi comme :

SCR Action	UE - OCDE	Hors UE-OCDE
Choc de base	39%	49%
Ajustement au 28/04/2016	-4,13%	-4,13%
Choc Final	34,87%	44,87%

SCR Change

- Choc de 25% de la valeur de marché par devise
- Absence de prise en compte de la diversification en cas de positions long/short en devises différentes
- Chocs inférieurs pour les devises de pays appliquant une politique de peg avec l'euro.

Devises	Chocs
Couronne Danoise	2,29%
Lev Bugare	1,04%
Franc Comorien	0,96%
Franc CFA d'Afrique de l'Ouest	0,11%
Franc CFA d'Afrique Centrale	0,11%

Approche Standard de calcul du SCR Marché (4/5)

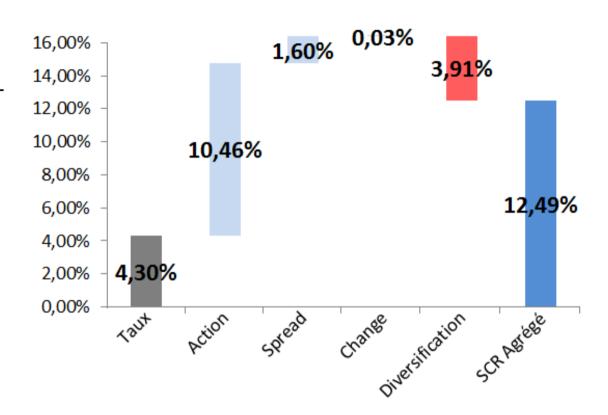
Matrice de corrélation

Une fois défini par sous-modules de risque, le calcul du SCR Marché s'effectue via une matrice de corrélation :

En se limitant aux principales sources de risques présentées dans cette note :

ho	Taux	Spread	Actions	Change
Taux	1			
Spread	X	1		
Action	X	0,75	1	
Change	0,25	0,25	0,25	1

Si choc à la hausse des taux, X = 0


Si choc à la baisse des taux, X = 0.5

Approche Standard de calcul du SCR Marché (5/5)

Application pratique

Introduction d'une allocation de benchmark représentative d'un portefeuille d'assurance nonvie :

- 70% d'un indice d'obligations agrégées (souverains et entreprises investment grade de la zone Euro)
- 30% d'actions MSCI Euro.

Intérêt : Capacité de diversification du risque

Le SCR final (12,5%) de l'indice est en effet bien inférieur à la somme de ses sous-modules (16,4%) du fait des corrélations définies entre les différentes sources de risque.

Optimisation sous contrainte de SCR (1/4)

Idée de l'optimisation et contraintes

- Méthodologie d'optimisation statique
 - maximisation du rendement prospectif sous contrainte d'un niveau de risque
- Construction d'allocations spécifiques à l'assurance
- Contrainte d'investissements long-only dans un ensemble d'indices Multi-Asset

Allocation Moyenne-variance

Métrique de risque :

 Volatilités et corrélations historiques entre les indices

ωî* = argmax↓ω ωî' μ-γ/2 ×ωî' Σω sc. ωî' e=1 et ω≥0

Allocation sous contrainte de SCR

Métrique de risque :

 SCR Standard calculés par sources de risques et corrélations réglementaires

ωf* = argmaxψω ωf' μ-γ/2 × ωf' Ωωsc. ωf' e=1 et ω≥0

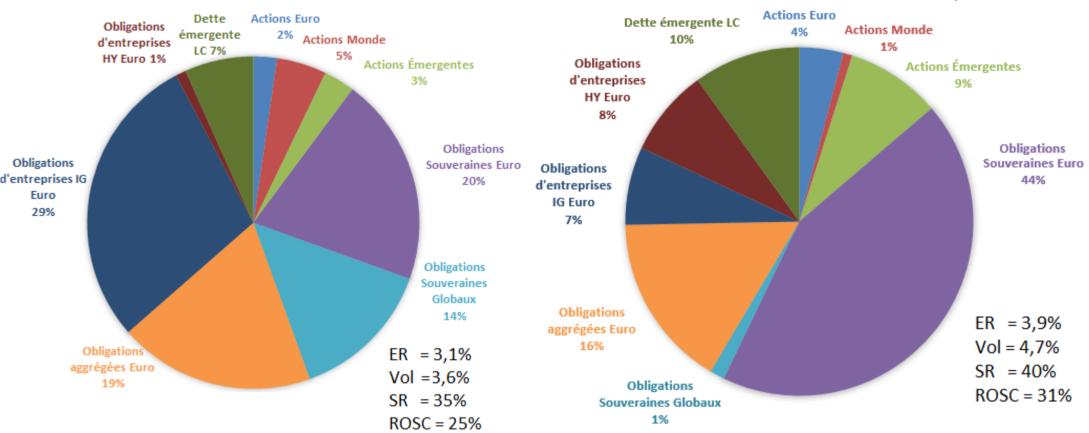
Optimisation sous contrainte de SCR (2/4)

à

Hypothèses de modélisation

- Rendements prospectifs construits avec une méthode proposée par AQR (voir [1])
- Volatilités et corrélations historiques sur la période 2003-2016
- SCR Marché calculés fin avril 2016

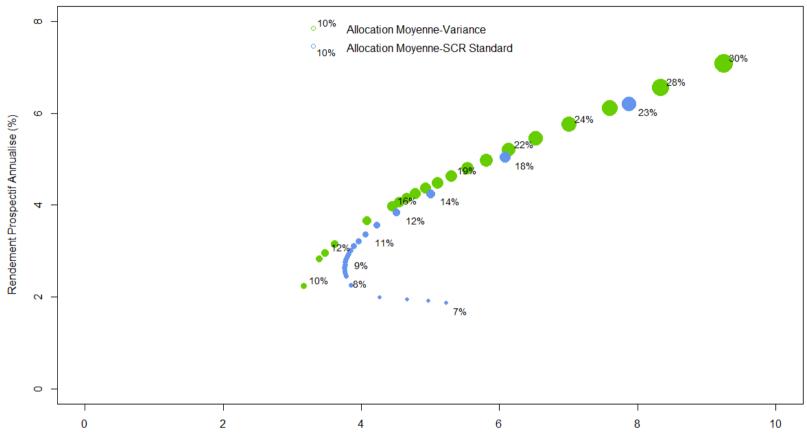
Ratios considérés


- Sharpe pour une vision moyenne-variance
- Return On Solvency Capital (ROSC) = ER / SCR pour une vision spécifique à l'assurance

Indice	SCR	ER	ROSC	Volatilité	Sharpe Ratio	
Obligations	Euro	6,9%	1,7%	24,4%	4,0%	-0,5%
souveraines	Global	21,6%	1,7%	7,8%	7,6%	-4,0%
Obligation	IG Euro	9,9%	2,3%	23,2%	3,5%	17,1%
d'entreprises	HY Euro	17,7%	4,0%	22,4%	11,0%	20,5%
Obligations agrégées	Euro	6,6%	1,9%	28,8%	5,7%	3,3%
Dotto ómorganto	LC	31,8%	8,4%	26,5%	9,3%	47,6%
Dette émergente	USD	36,4%	6,6%	18,0%	15,1%	17,0%
	Euro	34,9%	7,9%	22,7%	16,8%	37,0%
Actions	Monde	45,6%	7,0%	15,3%	12,6%	39,7%
	Émergent	54,8%	12,5%	22,8%	18,9%	45,0%
Indices diversifiés	70/30	12,5%	3,7%	29,6%	6,7%	29,7%
(obligations aggrégées/actions)	50/50	18,6%	4,9%	26,3%	9,1%	35,1%

Optimisation sous contrainte de SCR (3/4)

Allocation Moyenne/Variance pour un SCR de 12,5%


Allocation contrainte à un SCR de 12,5%

- Interprétations de l'impact de la contrainte de SCR :
 - 1. Incitation à l'investissement en obligations souveraines au détriment des actions
 - 2. Pénalisation des positions en devises étrangères réduisant la diversification géographique

Optimisation sous contrainte de SCR (4/4)

Interprétations des résultats en comparant les frontières efficientes

- Sous-performance générale des allocations contraintes en SCR par rapport à l'allocation moyennevariance
- > Par contre en ciblant un niveau de SCR donné, la stratégie permet d'obtenir un surplus de rentabilité
 - ❖ pour un SCR cible de 12,5% (benchmark), excès de rentabilité de 80 bps par rapport à une allocation moyenne-variance

De l'approche Standard vers un proxy de modèle interne

Avantage de l'approche

- Modèle simple à mettre en place
- Application directe dans un cadre d'optimisation statique

Limites de l'approche Standard

- Impacts parfois contre-intuitifs dans une logique de gestion du risque
- Matrice de corrélation constante dans le temps
- Difficulté pour l'assureur de visualiser la potentielle déformation des allocations en cas d'évolution des conditions de marché

Extension de l'approche via la génération de stress scénarios

- Proxy d'un modèle interne dédié aux activités de marché
- Création d'un module de risque permettant de générer la distribution du portefeuille à partir de scénarios de marché
- Calcul du SCR sous la forme d'un quantile à 0,5%

Modélisation stochastique et génération de stress-scénarios (1/6)

Choix de modélisation des actifs (1/2)

Actifs: Obligataires souveraines, Actions et Crédit (2/3 investment grade, 1/3 high yield)

Dynamique de taux court et modèle obligataire :

1. le risque lié au taux d'intérêt nominal, r, modélisé par une dynamique Vasicek :

$$dr \downarrow t = \kappa (r - r \downarrow t) dt - \sigma \uparrow r dW \downarrow t \uparrow B$$

2. le risque lié à la duration des obligations souveraines associé à un ratio de Sharpe $\lambda \uparrow B$:

$$dB(t,T)/B(t,T) = (r \downarrow t + \lambda \uparrow B \Gamma(t,T) - \Gamma(t,T) \uparrow 2 / 2) dt + \Gamma(t,T) dW \downarrow t \uparrow B$$

Dynamique actions:

$$dS \downarrow t / S \downarrow t = \mu \uparrow S dt + \sigma \uparrow S dW \downarrow t \uparrow S$$

$$d\lambda J t \uparrow S = a (\lambda \uparrow S - \lambda J t \uparrow S) dt - \sigma \uparrow \lambda \uparrow S dW J t \uparrow S$$

$$dS \downarrow t / S \downarrow t = (r \downarrow t + \sigma \uparrow S \lambda \downarrow t \uparrow S) dt + \sigma \uparrow S dW \downarrow t \uparrow S$$

Modélisation stochastique et génération de stress-scénarios (2/6)

Choix de modélisation des actifs (2/2)

Dynamique Crédit:

$$dC\downarrow t/C\downarrow t = dB(t,T)/B(t,T) + dX\downarrow t/X\downarrow t$$

- 1. le risque lié au taux sans-risque que l'on choisi identique à celle de l'obligation souveraine :
- 2. le risque lié au spread

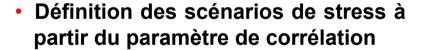
$$d\lambda \downarrow t\uparrow X = \gamma(\lambda\uparrow X - \lambda\downarrow t\uparrow X)dt - \sigma\uparrow \lambda\uparrow X \ dW\downarrow t\uparrow S$$

 $dX \downarrow t /X \downarrow t = \mu \uparrow X dt + \sigma \uparrow X dW \downarrow t \uparrow S$

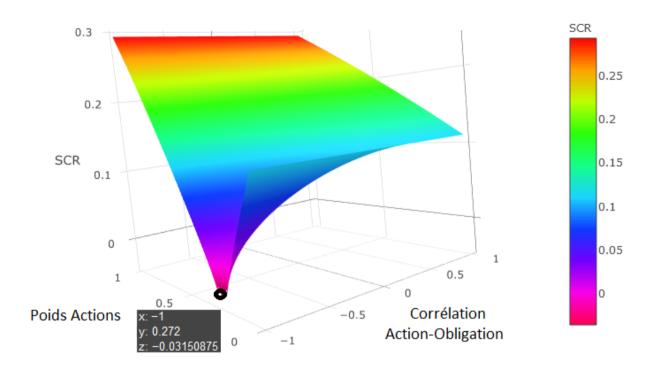
$$dX \downarrow t / X \downarrow t = (r \downarrow t + \sigma \uparrow X \lambda \downarrow t \uparrow X) dt + \sigma \uparrow X dW \downarrow t \uparrow S$$

Calibration

Données : historique US entre 1920 et 2016


+ rendements prospectifs de la partie précédente

Modélisation stochastique et génération de stress-scénarios (3/6)


 Influence majeure du facteur de corrélation entre actions et obligations

Déformation du portefeuille minimisant le SCR en fonction du paramètre de corrélation

- > 100% obligations souveraines si ρ =1
- \triangleright 27% actions / 73% obligations si ρ =-1

ρ	Scénario	
0,07	Estimation de long terme	
0,6	Crise obligataire entre 1993 et 1995	
-0,75	Sortie de la crise des subprimes entre 2010 et 2012	

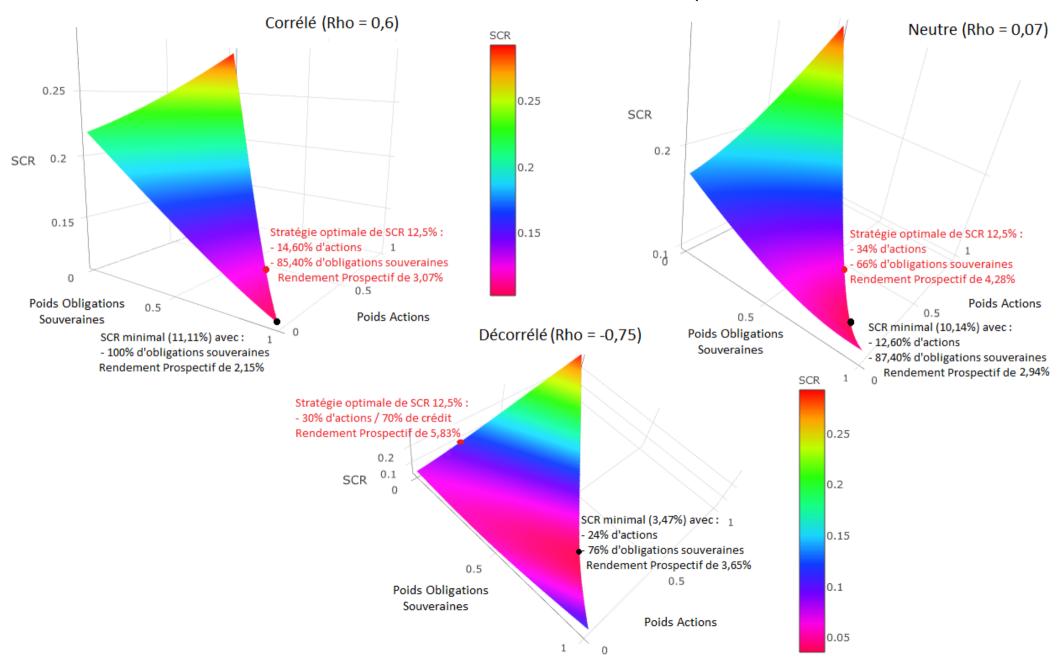
Modélisation stochastique et génération de stress-scénarios (4/6)

Méthodes d'estimation du SCR

> d'une part, une formule fermée de calcul du SCR dans notre premier modèle,

```
Variation de richesse: P \downarrow t + \tau / P \downarrow t \sim \mathcal{LN}(m,s \uparrow 2) | SCR = 1 - \exp[m + q \downarrow 0,5\% (\mathcal{N}(0,1)) \times s]
```

d'autre part, une méthodologie de simulations Monte Carlo, applicable dans les deux modèles.


SCR Marché		N	Modèle 2	
		Formule Fermée	Simulation MC	Simulation MC
Scénario 1	В	11.8%	11.5%	11.0%
Neutre	Р	13.6%	13.7%	12.4%
Scénario 2	В	15.0%	14.6%	13.9%
Corrélé	Р	17.2%	17.4%	15.7%
Scénario 3	В	4.1%	4.1%	4.1%
Décorrélé	Р	4.7%	5.0%	4.6%

<u>Légende</u>: B = Benchmark / P = Portefeuille optimal sous la contrainte d'un SCR Standard de 12,5%

• Remarque : la différence notable entre les deux modeles reside dans l'ajout d'une dynamique de retour à la moyenne des ratios de Sharpe actions et crédits.

Modélisation stochastique et génération de stress-scénarios (5/6)

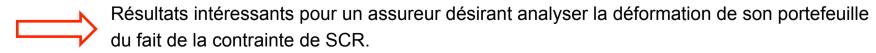
• Allocation sous contrainte de SCR – Déformation de la métrique en fonction de la corrélation

Modélisation stochastique et génération de stress-scénarios (6/6)

Allocation sous contrainte de SCR – Optimisation et résultats

Programme d'optimisation statique : maximisation du rendement prospectif sous contrainte de SCR

 $\omega^{\uparrow *} = \operatorname{argmaxl} \omega \exp(m + s^{\uparrow 2} / 2)$ sc. $\omega \ge 0$ et $1 - \exp(m + q l^0, 5\% (\mathcal{N}(0, 1)) \times s) = SCR^{\uparrow *}$


Avec m et s moyenne et volatilité du portefeuille calculées explicitement dans le modèle 1

<u>Allocations optimales pour un niveau cible de SCR à 12,5% :</u>

	Actions	Obligations souveraines	Crédit	ER
Scénario 1 Neutre	34.0%	66.0%	0.0%	4.28%
Scénario 2 Corrélé	14.6%	85.4%	0.0%	3.07%
Scénario 3 Décorrélé	30.0%	0.0%	70.0%	5.83%

Conclusion

- Objectif: proposer des méthodes de calcul du SCR et y associer des méthodes d'optimisation spécifiques à l'assurance
- 1. L'approche Standard définit une méthode simple pour calculer le SCR Marché par module de risques. Elle est actuellement utilisée par la majorité des assurances et mutuelles françaises.
 - Mise en évidence des impacts potentiels de la réforme sur les allocations d'actifs :
 - i. Investir plus dans les actifs obligataires souverains et moins dans les actions,
 - ii. Défavorise les devises hors Euro.
 - Construction d'une allocation contrainte par rapport à la mesure de SCR Standard permettant de proposer une réponse spécifique à l'assurance
- 2. La modélisation stochastique des actifs permet de calculer le SCR à partir de stress scénarios.
 - Module de gestion des risques extrêmes et piste d'extension vers une approche interne
 - Calcul du SCR via des méthodes analytiques puis numériques
 - Développement d'une méthode d'allocation spécifique à nos scénarios de stress

Extension: CVaR - Calcul et allocation sous contrainte

- Extension vers une contrainte de CVaR et la réglementation suisse
 - \triangleright Réglementation suisse (*Swiss Solvency Test*) : contrainte de CVaR à un niveau $\alpha=1\%$
 - Possibilité d'extension de la formule analytique du SCR via la relation d'Acerbi (voir [7]) :

 $CVaR\downarrow\alpha(X)=EXX>VaR\downarrow\alpha(X)=1/1-\alpha\int\alpha\uparrow1$ $\blacksquare VaR\downarrow\beta(X)d\beta$

 Synthèse des estimations

	Mode	Modèle 2	
CVaR Marché	Formule Fermée	Simulation MC	Simulation MC
Scénario 1 Neutre	14.1%	14.3%	12.9%
Scénario 2 Corrélé	17.8%	17.5%	16.3%
Scénario 3 Décorrélé	5.0%	5.3%	5.0%

 Allocation optimale sous la contrainte d'une CVaR de 12,5%

	Actions	Obligations souveraines	Crédit	ER	SCR
Scénario 1 Neutre	31.4%	68.4%	0.2%	4.07%	12.01%
Scénario 2 Corrélé	10.8%	98.0%	0.2%	2.81%	12.04%
Scénario 3 Décorrélé	27.6%	0.0%	72.4%	5.65%	11.96%

Principales références

Principales références

- [1] AQR Capital Management, *Capital Market Assumptions for major Asset Classes*, Alternative Thinking, 2016.
- [2] Asanga, Asimit, Badescu et Haberman, *Portfolio optimization under solvency constraints: a dynamical approach*, North American Actuarial Jounal Volume 18, No. 3, 2014.
- [3] AON Hewitt, The equity-bond correlation: The most important number you rarely think about, 2014
- [4] Banque de France, Stat Info Placements financiers des sociétés d'assurances, 2016.
- [5] Bruder, Gestion d'actif quantitative, Support cours Paris VII, 2016.
- [6] EIOPA, Technicals Specification for the Preparatory Phase, 2014.
- [7] Kisiala, Conditional Value-at-Risk: Theory and Applications, Mémoire master Edinburgh, 2015.
- [8] Markowitz, Portfolio Selection, 1952.
- [9] Munk, Dynamic Asset Allocation, Support cours Université Copenhage, 2013.
- [10] Mcloughlin, Resampling and Bootstrapping Techniques for Portfolio Optimisation, HSBC Multi Asset Research, 2013.